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Abstract

Optical interferometry is a technique which can be used to obtain high-resolution imagery

of a distant target by interfering light collected by multiple telescopes. Image restoration

from interferometric measurements poses a unique set of challenges. The first challenge is

that the measurement set provides only a sparse-sampling of the object’s Fourier Transform

and hence image formation from these measurements is an inherently ill-posed inverse

problem. Secondly, atmospheric turbulence causes severe distortion of the phase of the

measured Fourier samples. We develop array design conditions for unique recovery of

the true Fourier phase in the presence of this distortion, as well as a comprehensive

algorithmic framework based on the notion of redundant-spaced-calibration (RSC), which

together achieve reliable image reconstruction in spite of these challenges. Within this

framework, we see that the classical interferometric observables known as the bispectrum

and closure phase can limit sensitivity, and that generalized notions of these observables

can improve both theoretical and empirical performance in Fourier phase estimation. Our

framework leverages techniques from lattice theory to resolve integer phase ambiguities

in the interferometric phase measurements, and from graph theory, to select a reliable set

of generalized observables. As part of the performance assessment of our algorithm, we

first show that both the theoretical and simulated Fourier-phase estimation accuracy of the

algorithm approach an atmosphere-oracle Cramér-Rao Lower Bound at flux levels as low as

60 photons per interferometric fringe in the shot-noise-limited setting. Leveraging techniques

from the field of sparse recovery, we then demonstrate reliable image reconstruction from the

recovered Fourier estimates. Our results show that reconstructed image quality is retained
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even in simulated stressing scenarios consisting of per-exposure flux levels on the order of

10 photons per interferometric fringe with less than 10 minutes of observation time. The end

result is a comprehensive strategy to achieve reliable image reconstruction of dim objects

with optical interferometry.
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Introduction

The use of optical interferometry as a multi-aperture imaging approach is attracting in-

creasing interest in the astronomical and remote-sensing communities. The appeal of this

technique is primarily due to the high resolution it affords relative to single-aperture imag-

ing. Namely, the diffraction-limited angular resolution of a single aperture is proportional to

λ
D , where λ is the wavelength of the light, and D is the diameter of the aperture. On the other

hand, the achievable angular resolution of an interferometric array of apertures is instead

proportional to λ
Bmax

, where Bmax is the maximum spatial separation of any two apertures in

the array. Therefore with interferometry one can achieve the same high resolution offered

by an extremely large (and often prohibitively-costly) telescope by interfering light from

several telescopes of practical size distributed over a large area.

Image reconstruction in interferometry is akin to the more general problem of imaging

with sparse samples in the Fourier domain, which is encountered in many other fields from

medical imaging to radio astronomy. Namely, the fundamental problem is to regularize

the ill-posed reconstruction of NresEl resolution elements in the astronomical scene from

m � NresEl Fourier samples derived from the array’s interference patterns. Traditionally

approaches based on the so-called CLEAN algorithm due to Högbom (1974), which implicitly

fit the measurements to an image model consisting of a sparse collection of point-like sources,

have been used to solve this problem. Given the success of this relatively-simple algorithm,

it is hardly surprising that recently-developed techniques leveraging sophisticated sparse

image models (Wiaux et al., 2009) (Kurien et al., 2014) have shown promise. In fact such

algorithms belong to a burgeoning family of cross-disciplinary techniques, which are based
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on seminal work within the last decade (Donoho, 2006) (Candès et al., 2006), in the allied

fields of sparse recovery and compressed sensing. These algorithms generally take advantage

of the fact that while undersampled Fourier measurement sets do not uniquely define an

arbitrary underlying image, they can uniquely specify a special set of images of practical

interest: those that are sparse in some subspace.

If Fourier samples were directly available, we could directly apply standard techniques

for image recovery from a sparse measurement set in the frequency domain. However,

estimation of the Fourier samples is itself a complicated inference problem. Interferometric

systems interfere signals from multiple apertures to produce superpositions known as

fringes which encode samples of the Fourier Transform of the object under observation. In

our introductory Chapter 1, we present a mathematical model for fringe observation as

well as sensitivity limits for estimation of the fringe parameters. Estimates of the scene’s

brightness-normalized Fourier samples, which are known as complex visibilities, can then be

derived from these parameters. A fundamental challenge in interferometry is the distortion

of the phase of the measured complex visibilities due to natural variation in the effective

path lengths to the target observed by each aperture. In practice, the most stressing source

of this variation is turbulence in the Earth’s atmosphere. This turbulence alters the mean

phase profile at each aperture in the array by a non-uniform and time-varying amount (i.e.

the so-called optical piston), which in turn causes rapid shifting of the fringes on the focal

plane. If uncorrected, the resulting phase noise in the Fourier estimates then causes severe

distortion in the reconstructed image.

Techniques for elimination of this phase noise fall into two categories according to

the photon flux level. At high photon-flux levels, the fringes are bright and the complex

visibility estimates have high Signal-to-Noise ratio (SNR). In this case, it is possible to

directly decouple the contributions of the true Fourier phase from the confounding phase

contribution arising from the unknown, atmosphere-induced piston variation. While the

problem is ill-posed in general, this decoupling can be performed by alternating estimation

of the Fourier and image pixels while enforcing a-priori constraints in the image domain,
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such as source-sparsity (Pearson and Readhead, 1984). At low flux levels, on the other hand,

the individual fringe exposures (or frames) are typically too weak for such techniques to

be reliable. Moreover, the presence of random phase variation across frames due to the

atmosphere means that these fringe measurements cannot be directly integrated. Instead

atmosphere-invariant derivatives 1 of the fringe measurements such as the bispectrum and

the power spectrum are integrated and the complex visibilities must then be inferred from

these integrated observables.

This thesis in large part reflects the confluence of two emerging trends in interferometry

and in inverse imaging problems taken collectively: in the former, there is a need for

approaches for imaging complex, extended objects with a sparse measurement set and

limited a-priori knowledge, and in the latter, sparse recovery and compressed sensing (CS)

techniques continue to show great promise in imaging a vast range of natural images from

similarly-sparse measurement sets. While standard CS techniques are tailored to linear-

inverse problems and do not apply to atmosphere-invariant interferometric observables, we

develop and validate an algorithmic interface in Chapter 2 permitting these techniques to be

used successfully. We show empirically that for compact scenes the effect of the atmosphere

can be eliminated for a wide range of fluxes. The limiting restriction of our interface to the

imaging of compact scenes is a direct consequence of the fundamental ill-posed nature of

Fourier phase recovery from atmosphere-perturbed fringe measurements. Namely, since

the mapping from Fourier phase to the set of measured phases is rendered non-injective 2

by the atmosphere in general, we must introduce constraints upon the object to uniquely

determine the Fourier phase. Such regularization techniques and the object constraints they

impose can be obviated by introducing redundancy into the inter-aperture spacings in the

interferometric array. This well-posed framework for Fourier phase determination forms the

basis of Chapters 3 and 4.

1By derivative, we mean an observable derived from the fringe measurements, and not the mathematical
derivative.

2By non-injective, we simply mean that a given measurement set can be produced by different sets of Fourier
phases so that the former does not uniquely determine the latter.
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The use of redundant aperture spacing to recover the Fourier phase in the presence of

piston variation in a well-posed manner is known as redundant spacing calibration (RSC). Of

the myriad RSC techniques that have been developed for both radio and optical interferom-

etry, some operate on the measured complex visibilities (which we call Phasor approaches),

and others on the phase component of these complex visibilities (which we call Phase

approaches). Even with redundancy, a fundamental ambiguity exists in RSC-based phase

recovery which is rooted in the 2π-periodicity of the interferometric phase. As a direct result

of this ambiguity, the solution for the complex visibilities given the measured visibilities is

non-unique in both Phase and Phasor approaches. However, we will show in Chapter 3 that

for certain patterns, which we denote wrap-invariant patterns, this fundamental ambiguity

can be rendered benign. Namely, for such patterns, phase-unwrapping techniques such as

those based on the closest-vector-problem (CVP) formulation due to Lannes and Anterrieu

(1999) can successfully recover the true Fourier phase (modulo 2π). We show that this

wrap-invariance property is conferred upon arrays whose interferometric graph satisfies

a certain cycle-free condition. This condition is, to the best of our knowledge, the first

sufficient condition on an interferometric aperture pattern for unique recovery of the Fourier

phase. For cases in which this condition is not satisfied, we provide a simple algorithm

for identifying those graph cycles which prevent its satisfaction. For illustrative purposes,

we apply this algorithm to diagnose a member of a aperture-pattern family popular in the

literature which is not wrap-invariant, and modify it so that it achieves wrap-invariance.

Having established conditions for unique Fourier phase recovery, we then turn our

attention in Chapter 4 to the issue of well-posed and practical image formation. In partic-

ular, we consider low-flux scenarios in which atmosphere-invariant observables must be

integrated over many frames for reliable phase estimation. In hopes of improving sensitivity,

we generalize the classical atmosphere-invariant phase observables (i.e. the bispectrum

and closure phase) to higher-order observables, which we denote as the n-spectrum and

generalized closure phase respectively. We extend the uniqueness results in Chapter 3 to our

new observables, and develop a novel comprehensive algorithm for image reconstruction
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from these observables. Here we leverage the notion of minimum cycle basis from graph

theory. A standard sparse-recovery technique known as total-variation minimization is used to

perform the final image reconstructions. We present numerical and visual evidence indicat-

ing that our generalized observables can yield better estimation performance relative to their

classical counterparts. Moreover, we show that our algorithm’s performance approaches the

Cramer-Rao Lower Bound for this estimation problem in an example scenario of imaging a

dim object.

In summary, great progress has been made recently in solving standard, linear inverse

problems in imaging as part of the development of compressed sensing and sparse recovery

methodology. Simultaneously, many algorithmic techniques have been developed for

solving the specialized ill-posed inverse problem in optical interferometry, which is greatly

complicated by the atmosphere. Characterizing the penalty in achievable performance

associated with this increased complexity has remained an open problem. Hence in this

thesis we ask the question: "To what extent can we make interferometric imaging immune to

the effects of the atmosphere in both reliability and sensitivity?". We then probe the limits of

this immunity using a novel algorithmic framework which guarantees unique phase recovery

through the notion of wrap-invariance, and generalizes the notion of atmosphere-invariant

observable in order to approach theoretical sensitivity limits at low flux levels. In these two

pursuits, our framework leverages theory and algorithms from lattice theory and graph

theory, respectively. In the end we provide strong evidence that even in scenarios thought

to be stressing from an SNR perspective, we can achieve near-immunity to the effects of the

atmosphere.
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Chapter 1

Fundamentals of Optical

Interferometry

1.1 Chapter Overview

In this chapter, we introduce the physics-based principles of optical interferometry, thereby

providing a foundation for the main results of this thesis. As the cornerstone of these

principles, the Van-Cittert-Zernike Theorem establishes the interferometer as a Fourier-

imaging device, i.e. one whose output can be easily-conceptualized when examined in the

Fourier domain. In particular, we show that interferometric arrays characterize the object

under observation via measurement of its brightness-normalized Fourier components, which

are the so-called complex visibilities. We then provide a derivation of the sensitivity limits for

measurement of these complex visibilities in the shot-noise-limited case. This derivation

is based on the well-known Cramer-Rao Lower Bound (CRLB) in estimation theory, and

corroborates previous results due to Zmuidzinas (2003). This CRLB will prove useful as a

performance benchmark for the algorithms developed in this thesis. We then proceed to

introduce the role of atmospheric turbulence and other sources of interferometric phase

noise in interferometry. Finally we define a few important parameters of an interferometer:

resolution element, Field-of-View, and undersampling ratio.
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1.2 Interferometric Architectures

The main appeal of interferometry over other astronomical imaging techniques is that

it affords the same high-resolution capability offered by an extremely large (and often

prohibitively-costly) telescope by interfering light from several telescopes of practical size.

Optical interferometers enable the imaging of a distant scene by providing a sampling of

the scene’s the 2D Fourier Transform. Several excellent surveys provide the theoretical

basis of interferometry as well as the practical issues involved in building and operating an

interferometer, including those by Labeyrie et al. (2006), Glindemann (2011), and Buscher

(2015). Each pair of telescopes in an interferometric array measures a single angular spatial

frequency of 2πb
λ radians, where b is the vector difference of the telescope positions, which

is known as a baseline. For an array of Nap apertures, the data set then consists of all (Nap
2 )

such measurements.

There are two popular beam combination architectures in use in optical interferometry:

the pairwise combination scheme, and the Fizeau combination scheme. The two schemes

are illustrated in Figure 1.1. Suppose we have a telescope array consisting of Nap apertures,

each of which collects n photons from a distant source. In the Fizeau scheme, light from

all telescopes is interfered on a single focal plane, forming an interference pattern known

as a fringe for each telescope pair. Each fringe encodes a sample of the scene’s 2D Fourier

Transform. In the pairwise scheme, light from each aperture is split Nap ways and combined

with that of each other aperture to form a single fringe pattern on separate focal planes.

Hence each of the (Nap
2 ) focal planes receives 2n

Nap−1 a photons, which is typically a small

fraction of the total photons incident upon the array.

Ideally an interferometer 1 provides a perfect encoding of the scene’s sampled Fourier

Transform. In practice, however, we never observe pristine interference fringes in either

architecture. The quality of the fringes is degraded by statistical fluctuations in the arrival

times of photons on the focal plane, which is a phenomenon known as shot noise. We will

1We will use the terms interferometer and interferometric array interchangeably in this thesis
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Figure 1.1: The two popular beam combination schemes in optical interferometry

quantify the impact of shot noise further in the course of the thesis. For now, we note

that the Fizeau architecture uses all light to form each fringe while incurring shot noise

from all Napn photons. On the other hand, the pairwise architecture uses a fraction of the

light to form each fringe, which is then by corrupted by the shot noise due to the photons

collected by two apertures. A fundamental result due to Zmuidzinas (2003) quantified

this tradeoff and established the superior overall sensitivity of the Fizeau (or all-in-one)

scheme with respect to the pairwise scheme. Because the Fizeau architecture is also typically

simpler to implement, it is often preferred in practice. The results in this thesis are therefore

geared toward the Fizeau architecture, although we will leverage the pairwise architecture

in Chapter 4 as a conceptual springboard for subsequent analysis.

1.3 The Van-Cittert-Zernike Theorem

To derive the Theorem, let us model a source in the sky as a superposition of differential

emitting elements of size ∆Ω. Consider then the electric field at the j-th aperture of an

interferometric array which is a distance d from one such differential patch. This can be

written as:

Ej(Ω) = a(Ω)∆Ω
Rj

eiω(t−
Rj
c )) (1.1)
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Figure 1.2: The Fizeau Interferometer Concept

where a(Ω) is the amplitude of the field at the source, Rj is the distance from the object

to the j-th aperture, ω is the angular frequency of the wave, and c is the speed of light. For

the purposes of this analysis, we neglect the amplitude variation amongst elements of the

array, so that the amplitude at all apertures is a constant a(Ω)∆Ω
d .

The fields from all of the point sources in the interferometer’s field-of-view are super-

imposed on the system’s focal plane. For the Fizeau interferometer, this superposition is

typically performed by a beam-combiner, which focuses the light collected by each aperture

to a common point with propagation direction specified by an aperture-specific wave-vector

kj (see Figure 1.2).

Using the definitions above, we can compute the field contribution of each aperture at

an arbitrary point on the focal plane ρ. This contribution will be a function of the respective

wave-vectors and vector distances from p. Namely, we have:

Ej(ρ) =
a(Ω)∆Ω

d
· ei(kj·xj(ρ))eiω(t−

Rj
c ) (1.2)

where kj is the wavevector of the outgoing wave from aperture j at the beam-combiner,

and xj(ρ) is the vector position to ρ relative the j-th aperture position at the beam-combiner.
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As we show in Appendix A.1, we can rewrite this expression in terms of the lateral

aperture position rj at the beam combiner as:

Ej(ρ) =
a(Ω)∆Ω

d
· ei(rj·ρ+φj)eiω(t−

Rj
c ) (1.3)

where φj is an aperture-dependent phase which is independent of ρ.

Now consider the field superposition at the pixel at vector coordinate ρ on the focal

plane (see Figure 1.2), which can be written as:

E(Ω) = a(Ω)∆Ω
d · (∑Nap

j=1 ei(rj·ρ)eiω(t−
Rj
c )) (1.4)

where we have neglected any attenuation incurred by the field en-route to the focal plane for

simplicity. To obtain the field for the complete source, we now integrate over all differential

patches (which we call point sources) in the source to obtain:

Etotal =
∫

dΩ · a(Ω)

d
(

Nap

∑
j=1

ei(rj·ρ+φj)eiω(t−
Rj
c )) (1.5)

The detector at pixel ρ measures the intensity Q of the superposition. Namely,

Q(ρ) = |Etotal |2 = EtotalE∗total (1.6)

or,

Q(ρ) =
1
d2

∫
dΩ1 · a(Ω1)(

Nap

∑
j=1

eiω(t−
Rj
c )ei(rj·ρ+φj))

∫
dΩ2 · a∗(Ω2)(

Nap

∑
k=1

e−iω(t− Rk
c )e−i(rk ·ρ+φk))

The final measurement is a photon count which is proportional to the time-averaged

intensity. Hence, after re-arranging and time-averaging, we obtain:

〈Q(ρ)〉 = 1
d2

∫∫
〈a(Ω1)a∗(Ω2)〉(

Nap

∑
j=1

eiω(t−
Rj
c )ei(rj·ρ+φj))(

Nap

∑
k=1

e−iω(t− Rk
c )e−i(rk ·ρ+φk))dΩ1dΩ2

(1.7)
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Figure 1.3: Path difference between two apertures

We can simplify this expression greatly by noting that, with a few exceptions, astronomi-

cal sources are spatially-incoherent, which means that the complex amplitudes of radiated

waves from different points are uncorrelated. Namely,

〈a(Ω1)a∗(Ω2)〉 = I(Ω)δ(Ω1 −Ω2) (1.8)

where δ(x) denotes the Dirac delta function.

The result is that the double integral above collapses to a single integral in Ω. We

can now write the sum of all pairwise products in Equation (1.7) as the following single

summation over all (Nap
2 ) aperture pairs:

〈Q(ρ)〉 = 1
d2

∫
I(Ω)NapdΩ+

1
d2

Nap

∑
(j,k):k>j

(ei(ρ·∆rjk+φjk)
∫

I(Ω)ei(
ω∆Rjk

c )dΩ + e−i(ρ·∆rjk+φjk)
∫

I(Ω)e−i(
ω∆Rjk

c )dΩ) (1.9)

where the first term represents the sum of the products of each aperture’s field with its

conjugate (i.e. terms of the form EjE∗j ).

To understand the meaning of Equation (1.9), it is useful to approximate ∆Rjk using the

geometry illustrated in Figure 1.3. Let us define the unit vector originating at aperture 1

and pointing in the direction of the emitting source as n̂. For an arbitrary source location,
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this unit vector would of course differ for each aperture. In most astronomical scenarios,

however, the inter-aperture distance is extremely small compared with the distance between

the source and the aperture array (Buscher, 2015). In such cases it is reasonable to assume

that the direction vector n̂ is approximately constant across the array. As shown in Figure

1.3, we have:

∆Rjk = bjk · n̂ (1.10)

where bjk is the vector difference position of the k-th and j-th apertures.

Moreover, we can write the differential patch dΩ in terms of components of this vector

n as:

dΩ = (d2)dnxdny (1.11)

Substituting Equations (1.10) and (1.11) into Equation (1.9) and noting that ω
c = 2π

λ , we

obtain:

〈Q(ρ)〉 =
∫

I(Ω)Napdnxdny+

Nap

∑
(j,k):k>j

(ei(ρ·∆rjk+φjk)
∫

I(Ω)ei(
2πbjk

λ ·n̂)dnxdny + e−i(ρ·∆rjk+φjk)
∫

I(Ω)e−i(
2πbjk

λ ·n̂)dnxdny) (1.12)

Note that the two integrals are F∗(bjk
λ ) and F(bjk

λ ), respectively, where F(bjk
λ ) is the 2D

Fourier Transform of the source evaluated at spatial frequency bjk
λ . For simplicity of notation,

let us index all of the aperture pairs (j, k) with a single index h. Defining φh := φjk, and

Fh := F(bh
λ ) and substituting, we have:

〈Q(ρ)〉 =
∫

I(Ω)Napdnxdny +
(

Nap
2 )

∑
h=1

Fhei(ρ·∆rh+φh) + F∗h e−i(ρ·∆rh+φh) (1.13)

〈Q(ρ)〉 = F0Nap +
(

Nap
2 )

∑
h=1

2|Fh|cos(ρ · ∆rh +∠Fh + φh) (1.14)

From this last equation, we see that focal plane consists of a superposition of 2D sinusoids
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(or fringes), each of which encodes a distinct Fourier component of the source. This result is

the Van-Cittert-Zernike Theorem which was first derived by Pieter van Cittert in 1934 (van

Cittert, 1934) and then proved in simpler fashion by Frits Zernike in 1938 (Zernike, 1938).

For subsequent analysis in this thesis, it will be convenient to parameterize the fringes

using the following Definitions:

Definition 1.3.1. The complex fringe phasor z at a given spatial frequency is given by: z :=

|Fb|ej∠Fb

Note that the magnitude of the fringe phasor will be proportional to the brightness of

the object. It is also useful to have a quantity describing the strength of a given Fourier

component relative to the overall brightness of the object. This relative measure is provided

by the complex visibility:

Definition 1.3.2. The complex visibility v of an object at a given spatial frequency is given by

the ratio v = |Fh|ej∠Fh

F0

Definition 1.3.3. The visibility γ of an object at a given spatial frequency is the modulus of

the complex visibility, i.e. γ := |Fh|
F0

Definition 1.3.4. The Fourier phase θ of an object at a given spatial frequency is the argument

(i.e. phase) of the complex visibility, i.e. θ := ∠Fh.

With Definition 1.3.3, we can write Equation (1.15) as:

〈Q(ρ)〉 = F0Nap +
(

Nap
2 )

∑
h=1

2γhF0cos(ρ · ∆rh +∠Fh + φh) (1.15)

The expected photon counts observed at the detectors are directly proportional to the

intensity present. Let the proportionality constant relating intensity to photon counts be

given by κ, so that a vectorized representation of these expected photon counts is given by:

〈y(ρ)〉 = κF0Nap + κ

(
Nap

2 )

∑
h=1

2γhF0cos(ρ · ∆rh +∠Fh + φh) (1.16)
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Moreover we assume that light is conserved throughout the fringe generation process,

and hence the photon counts must sum to the total number Tp of photons incident upon the

array, i.e. Tp = nNap, i.e.

Tp = ∑
ρ

〈y(ρ)〉 = ∑
ρ

κF0Nap + κ

(
Nap

2 )

∑
h=1

2γhF0cos(ρ · ∆rh +∠Fh + φh)

 = nNap (1.17)

In this thesis, we will consider the scenario in which the periods of the fringe sinusoids

are all integer multiples of pixels on the focal plane. This is one of the so-called DFT

conditions commonly employed in interferometry to avoid fringe estimation bias due to

spectral leakage (Gordon, J. A. and Buscher, D. F., 2012). In this case the sinusoidal term

vanishes in the sum in Equation (1.17) leaving only the constant (first) term, and if we define

N f p as the number of pixels on one side of a square focal plane, we have:

∑
ρ

κF0Nap = N2
f pκF0Nap = nNap (1.18)

which in turn implies that κ = n
F0 N2

f p
, and hence by substitution into Equation (1.16)

yields:

〈y(ρ)〉 =
nNap

N2
f p

+
2n
N2

f p

(
Nap

2 )

∑
h=1

γhcos(ρ · ∆rh + θh + φh) (1.19)

1.4 The Cramer-Rao Bound for the Complex Visibilities

There are two principal sources of noise that affect this measurement. We have already

alluded to the shot noise arising from the fact that photon arrivals are not uniform in time

even if incident intensity is constant. The resulting uncertainty in photon counts for a

given exposure time is well-modeled as a Poisson distribution with mean λT, where λ is

proportional to the intensity and T is the exposure time. The second source of noise is read

noise, which is thermal noise in the detection circuitry. Read noise is well-modeled by the

Gaussian distribution. Since shot noise is proportional to intensity whereas read noise is
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not, the former dominates the latter in high light-level scenarios. And with recent advances

in electronics, the light-level regime in which read noise is important continues to diminish.

We will therefore focus on detection limits for the shot-noise-limited case.

Recall Equation (1.19) provides an expression for the time-averaged intensity. To obtain

lower bounds on sensitivity, let us assume that the phase differences ∆θh are known and

therefore calibrated. We can write the observation model in matrix form as:

〈y(ρ)〉 =
nNap

N2
f p

+
2n
N2

f p
...

×


cos(ρ(1) · ∆k1) −sin(ρ(1) · ∆k1) cos(ρ(1) · ∆k2) −sin(ρ(1) · ∆k2) ...

cos(ρ(2) · ∆k1) −sin(ρ(2) · ∆k1) cos(ρ(2) · ∆k2) −sin(ρ(2) · ∆k2) ...

...





Re[v1]

Im[v1]

Re[v2]

Im[v2]

...


Suppose that the interferometer’s output is a beam with an extent of N f p pixels on

the focal plane. Letting A be the N2
f p-by-2(Nap

2 ) matrix in the equation above (the so-called

visibility-to-pixel matrix (V2PM)), we can write this matrix equation compactly as:

y =
nNap

N2
f p

1T
N f p

+
2n
N2

f p
Av̂ (1.20)

where 1T
N f p

denote the constant ones vector of length N f p, v̂ is the vector containing the

quadrature components of the complex visibilities. The actual pixel counts can be modeled

as i.i.d. Poisson random variables with means y, i.e.

Y ∼ Poisson(y). (1.21)

Following a similar derivation given in Harmany et al. (2012), we can now write:

15



p(Y|y) =
N f p

∏
i=1

(eT
i y)Yi

Yi!
exp(−eT

i y) (1.22)

where ei is the unit vector of the i-th canonical basis. Substituting for y, we obtain the

negative log-likelihood as:

F(y) = 1T
N f p

y−
N f p

∑
i=1

Yilog(eT
i y) + C (1.23)

where 1 is an all-ones vector of size N f p, and C is a constant independent of v̂. Let

Ã := 2n
N2

f p
A. Then the gradient with respect to v̂ is given by:

∇v̂F(y) = ÃT1−
N f p

∑
i=1

Yi

eT
i y

ÃTei (1.24)

Therefore the Hessian is:

∇2
v̂F(y) = ÃT

N f p

∑
i=1

Yi

(eT
i y)2 eieT

i Ã (1.25)

To obtain the Fisher information matrix I(v̂), we take the negative-expectation of this

quantity:

I(v̂) = −E[∇2
v̂F(y)] = −ÃT

N f p

∑
i=1

E[Yi]

(eT
i y)2 eieT

i Ã (1.26)

But since E[Yi] = eT
i y, this simplifies to:

I(v̂) = ÃTDÃ (1.27)

where D is a diagonal matrix with Dii =
1

(eT
i y) .

Therefore the Cramer Rao Lower Bound (CRLB) for the variance of each estimated

Fourier coefficient is given by:
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Figure 1.4: The relationship between aperture patterns and Fourier sampling

var(v̂i) ≥ [I(v̂)−1]ii (1.28)

This expression matches the result given by Zmuidzinas (2003).

1.5 Key Parameters of an Interferometer: Resolution, Field-of-View,

and Undersampling Ratio

In the Section 1.3 we established that the interference fringe generated by a pair of apertures

separated by a vector b encodes the amplitude and phase of the Fourier Transform of

the scene at spatial frequency b
λ . For real images each baseline actually contributes two

spatial frequency samples, as the Fourier Transform of real images is conjugate symmetric.

As an example, consider the aperture pattern in the left panel of Figure 1.4. Suppose we

are interfering light at a wavelength of 500 nm. The baseline b12 formed by apertures

1 and 2 generates a fringe encoding the complex visibility v12 at a spatial frequency of

b12
λ = (2e6, 6e6) cycles/radian, and its conjugate v∗12 at a spatial frequency −(2e6, 6e6)

cycles/radian.

Consider the Cartesian frequency sampling grid with gridpoint spacing ∆min as shown

17



Figure 1.5: Representation of a scene as a Field-of-View comprised of resolution elements

in Figure. Suppose we sample a 2D-signal in the Fourier domain with sampling interval

∆s, f req =
1

2R along each dimension. By the well-known Nyquist Sampling Theorem, we know

that only images spatially-limited to ±R along each dimension can be uniquely represented

with these samples; images beyond this extent will suffer from aliasing. Therefore an

interferometer whose sampled spatial frequencies lie on a grid with spacing ∆min = bmin
λ

has an unambiguous Field-of-View area of 1
∆2

min
= λ2

b2
min

. Conversely, by the space-frequency

duality of the Nyquist Theorem, we know that we can uniquely represent an image ban-

dlimited to frequency extent ±L by sampling in space at an interval of ∆s,space =
1

2L . Given

the maximum spatial frequency observed by our interferometer is L = ∆max = bmax
λ , the

bandlimited approximation of the image is uniquely defined by samples spaced λ
2bmax

apart

along each dimension. Therefore the size of the smallest resolvable element in the image,

which we call the resolution element, is given by λ2

4b2
max

. Figure 1.5 depicts the notions of

Field-of-View (FOV) and resolution element (resEl) visually.

With the areas of the Field-of-View and resolution element in hand, we can now compute

the number of resolution elements in the bandlimited approximation of the image as the

ratio of these two quantities, or:

NresEls = 4r2 (1.29)
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where r = bmax
bmin

.

We now define our undersampling ρ as the ratio of the number of distinct Fourier

samples to the number of resolution elements NresEls in the image. Each Fourier sample

we measure is actually a pair of samples since for real images, the value of the Fourier

Transform at a given spatial frequency is the conjugate of that at the corresponding negative

spatial frequency. Hence we have:

ρ =
2(Nap

2 )

NresEls
=

1
2r2

(
Nap

2

)
(1.30)

1.6 Atmospheric and Instrumental Phase Noise

Our analysis thus far has assumed that the effective path between the beam-combiner and the

target depends merely on the source-instrument geometry depicted in Figure 1.2. In practice

there are several deterministic and random sources of path variation across the aperture array.

Common deterministic sources of path variation include that in the optical paths traversed

between the instrument’s front-end and beam-combiner. The predominant random sources

of delay are atmospheric turbulence and instrumental vibration. Atmospheric turbulence,

which is typically the more stressing of these two sources, alters the optical path traversed

by the wave arriving at each aperture in a nonuniform and time-varying manner.

Let us consider the total path alteration due to all of the sources mentioned. Let us then

define the corresponding phase shift resulting from this alteration at aperture j as eiφj,total . If

these phase shifts are carried through the analysis in Section 1.3, we obtain:

〈y(ρ)〉 =
nNap

N2
f p

+
2n
N2

f p

(
Nap

2 )

∑
(j,k)

γjkcos(ρ · ∆rjk + θjk + φjk) (1.31)

where φjk := φj,total − φk,total is the difference between the total phase shifts at the two

apertures in the baseline associated with aperture pair (i, j).

Let us now examine a traditional method for eliminating the effect of this phase noise

which was first suggested by Jennison (1958) in the context of inteferometry at radio wave-
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lengths. Suppose the atmosphere adds phases φj and φk to apertures k and j, respectively.

The result is that the observed complex visibility is given by:

ṽjk = vjkei(φj−φk) (1.32)

We can eliminate such nuisance factors by forming a triple product g of the Fourier

phasors along a triangle of baselines (e.g. g123 := ṽ12ṽ23ṽ31). As shown in Figure 1.6,

this special triple product (known as the bispectrum) cancels the atmospheric phase terms,

leaving only the desired Fourier information (i.e. the {θ}). The phase of the bispectrum

∠g, which is known as the closure phase, can hence be used to recover estimates for the

Fourier phases. Consider an interferometer that measures all baselines among Nap apertures.

Out of the (Nap
3 ) possible triangles, only (Nap−1

2 ) of the associated closure phase relations

are linearly-independent (Readhead et al., 1988). If we combine these closure phases with

the Fourier magnitude estimates for each of the (Nap
2 ) baselines, we now have a set of

atmospheric-invariant observables with which we can attempt image reconstruction.
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Figure 1.6: Eliminating the effect of atmospheric turbulence with phase closure
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Chapter 2

Leveraging compressed sensing

techniques in optical interferometry

2.1 Citation to Previously-Published Work

This chapter contains text and figures published previously in the following paper:

Kurien, B. G., Rachlin, Y., Shah, V. N., Ashcom, J. B. and Tarokh, V. (2014). Compressed

sensing techniques for image reconstruction in optical interferometry. In Imaging and

Applied Optics 2014, Optical Society of America, p. SM2F.3.

2.2 Chapter Overview

Optical interferometers image a scene by sampling the spatial frequencies that comprise

its 2D Fourier Transform. The sample set is typically much smaller than the number of

resolvable elements in the instrument’s field-of-view (FOV). In the related field of radio

interferometry, sparse recovery (SR) techniques based on recent seminal work (see, e.g.,

Wiaux et al. (2009)) have proven successful in regularizing the ill-posed problem arising

from this undersampling. In contrast, atmospheric turbulence precludes the availability of

direct Fourier phase information in optical interferometry, and hence CS techniques do not
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directly apply. We have developed and validated a robust algorithmic interface between the

Fourier magnitude and bispectrum observables available in the optical interferometry and

SR regularizations known as Total Variation Minimization for which fast solvers exist.

2.3 Problem Statement and Approach

There are two principal challenges that one encounters when trying to reconstruct im-

ages from optical interferometric measurements. Each aperture pair (or baseline) in an

interferometer samples the Fourier transform of the image in its field of view at a spa-

tial frequency b
λ , where b is the length of the baseline, and λ is the wavelength of light

collected. Interferometers rarely measure enough baselines to fully sample the Fourier

transform. Hence reconstruction of the image from such undersampled measurement set is

an ill-posed (or underdetermined) problem; we must recover intensities for NresEl resolution

elements in the scene under observation from m� NresEl spatial frequency measurements

corresponding to the available baseline pairs in the telescope array. To make the problem

well-posed, additional constraints must be enforced. Traditionally regularization approaches

based on the so-called CLEAN algorithm due to Högbom (1974), which implicitly fits the

measurements to an image model consisting of a sparse collection of point-like sources,

have been used to solve this problem.

It is well-known in imaging that successful regularization schemes apply constraints

which accurately capture the properties of the image we wish to reconstruct. Likewise the

success of the CLEAN algorithm has been largely limited to astronomical scenes which

closely match its point-source-collection assumption. The astronomical community has

hence been led to consider more generally-applicable prior models. A property shared by

an overwhelmingly-large fraction of natural images is compressibility. Compressible images

are those which can be well-approximated by a sparse representation in some domain. The

smallness of an image’s L1-norm 1, as applied to either directly to the image pixels, their

1The L1-norm of a vectorized image x, denoted ‖x‖1, is the sum of the absolute values of the entries in x
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gradient, or their wavelet coefficients, has proven to be a remarkably effective proxy for the

image’s compressibility. This observation and techniques that exploit it are at the core of

the field of sparse recovery (SR) as well as the tightly-linked field of compressed sensing (CS)

(Candès et al., 2006) (Donoho, 2006). Though a wide variety of sparse-recovery techniques

have arisen in the past few decades, the vast majority of them regularize problems with a

linear observation model:

y = Fx + n (2.1)

where y is the measurement vector, x is a vector representing the unknown signal or

image, F is the measurement matrix, and n represents additive measurement noise.

While sparse-recovery techniques have been applied successfully to reconstruction

in radio interferometry (Wiaux et al., 2009), optical interferometry, on the other hand,

poses additional challenges beyond the Fourier-undersampling problem discussed above.

Namely, atmospheric turbulence necessitates a non-linear formulation of the reconstruction

problem. Recall from Chapter 1 that there are (Nap
2 ) unknown Fourier phases as well as

Nap − 1 unknown piston differences, and hence inference of the Fourier phases from the

(Nap
2 ) phase measurements available in a non-redundant array is inherently ill-posed. The

traditional means of mitigating this issue has been to again impose prior constraints on the

reconstructed image (e.g. constraints on the scene’s compactness, sparsity, or smoothness).

In particular, a myriad of so-called self-calibration algorithms have been developed (see, e.g.,

Pearson and Readhead (1984)) which alternate between estimation of the Fourier phases

and estimation of the image coefficients subject to the imposed constraints. Such algorithms

have been shown to be successful in high-flux scenarios in which the interferometric

measurements have a high signal-to-noise ratio (SNR). In low-flux scenarios on the other

hand, one must integrate observables over a long time period in order to build sufficient

SNR for reliable image reconstruction. Since integration beyond the coherence time of the

atmosphere would result in fringe blurring, one is then led to the formation and subsequent

integration of atmosphere-invariant observables from each atmosphere-coherence time (or
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frame).

In Section 1.6 we introduced the bispectrum observable as the classical basis for

atmosphere-invariant inference in optical interferometry. Formed as the product of three

fringe phasors associated with the sides of a baseline triangle (e.g. b12, b23, and b31),

the bispectrum is a non-linear function of the complex visibilities of the image. Recall

that the atmosphere-induced terms cancel in these products and hence, like the Fourier

magnitudes, these so-called bispectra are atmosphere-invariant observables. However, for a

non-redundant array with (N
2 ) distinct baselines, recovery of the Fourier phases from the

bispectra phases (i.e. the closure phases) remains ill-posed since there are only (N−1
2 ) indepen-

dent closure phases (Readhead et al., 1988). Successful bispectra-based image reconstruction

remains feasible in spite of this ill-posedness (see e.g. Thiébaut (2013), Besnerais et al. (2008)),

but again prior constraints (e.g. on the image support) must be enforced to regularize the

reconstruction.

An important property of the bispectrum which we will exploit in our reconstruction

method is its invariance to scene translation. To illustrate this property, let us denote the

spatial frequency vectors of two sides of a bispectrum triangle as u and v, respectively.

Then the spatial frequency of the remaining side will be w := −(u + v). If ĝ(p) is the

corresponding (normalized) bispectrum of a scene at its original position p, then by the

shift property of the Fourier transform, the bispectrum of the translated image becomes:

ĝ(p + δp) = ej(θu+u·δp)ej(θv+v·δp)ej(θ−(u+v)−(u+v)·δp) (2.2)

= ej(θu+θv+θ−(u+v)) = ĝ(p) (2.3)

where we have dropped the aperture subscripts for purposes of generality.

Since the bispectra are non-linear functions of their underlying image, reconstruction

from these observables does not map directly onto the linear SR framework in Equation (2.1).

To address this challenge, we developed an interface which first recovers Fourier component

estimates from bispectra and Fourier magnitudes, using a nonlinear least squares solver.
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Figure 2.1: Overview of Proposed Two-Stage Approach

With the Fourier component estimates at hand, the image estimate can then be recovered

using standard SR techniques. The approach is diagrammed in Figure 2.1 below.

2.4 Description of Stage 1 of Algorithm

The goal of Stage 1 of our algorithm is to use the measured bispectra and Fourier magnitudes

to recover estimates of the true Fourier components of the image. Recall from Section 1.3

that the fringes provide measurements of the Fourier magnitudes directly. Hence it remains

to recover the Fourier phase information. Since there are (Nap
2 ) unknown Fourier phases in

a non-redundant array but only (Nap−1
2 ) independent closure phases, this sub-problem is

itself ill-posed. Namely, we cannot hope to find a unique solution for the Fourier phases

simply by minimizing the residuals of the bispectra data. Instead our algorithm employs a

gradient-based search to find the phase set that minimizes a regularized objective consisting

of a data term and a prior term. The data term is the sum of the squared bispectrum

residuals. The prior term is a metric that favors those Fourier phase vectors corresponding
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to a spatially-compact intensity profile in the image domain. This kind of joint metric has

been suggested for optical interferometric applications before in the work of Thiébaut (2013).

However, whereas the method in Thiébaut (2013) searches for a metric-minimizing image,

our method first searches for the metric-minimizing baseline phase set, which is inherently

a smaller set given the undersampled nature of the problem.

θ̂ = arg min
θ

fdata(θ, ḡ, a) + µfprior(θ, a) (2.4)

The data (or residual) and prior terms are defined as follows.

fdata(θ, ḡ, a) =
Nb

∑
k=1

∥∥∥∥ 1
wk

(ḡk − ak1ak2ak3exp(j(θk1 + θk2 + θk3)))

∥∥∥∥2

(2.5)

where ḡk is the k-th bispectrum measurement, {θki} are the unknown Fourier phases in

the k-th bispectrum, the {aki} are estimates for the magnitudes of the Fourier coefficients in

the k-th bispectrum, and wk is a weighting factor proportional to the estimated variance of

the k-th bispectrum.

fprior(θ, a) =
∥∥Re[F∗ya,θ] � (1− hgaussian)

∥∥2 (2.6)

where F is the partial DFT matrix whose rows are 2D-sinusoidal basis functions sampled

by the array, ya,θ is the vector of estimated Fourier coefficients with magnitudes given by a

and phases given by θ, hgaussian denotes a centered Gaussian window with a peak value of

unity, 1 denotes the vector whose entries are all 1, and the operation � denotes point-wise

multiplication.

An intuitive interpretation of the regularization above can be obtained by decomposing

the computation into steps. We seek to fit the bispectra with a set of Fourier phases θ̂ which

together with the estimated Fourier magnitudes produce an image with compact energy.

The data term in the metric fdata is a sum of the squared residuals of measured bispectra

with respect to the bispectra associated with the phase vector θ̂. The steps for computation

of the prior term are as follows. First we associate the phases in θ with their corresponding
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Figure 2.2: Inverted Gaussian penalty function
(
1− hgaussian

)
; the dark region represents an area of near-zero

penalty

magnitude estimates in a to form estimates for the complex Fourier components ya,θ. We

then apply the pseudo-inverse of the partial DFT matrix F to the vector ya,θ and retain the

real part 2, thereby obtaining an image-space representation of ya,θ. Finally, we perform

point-wise multiplication of this image with a function of the form shown in Figure and

compute the norm of the result. This operation computes a compactness metric which

penalizes ya,θ in proportion to its spatial energy spread. Note that the actual position of the

Gaussian taper is immaterial; as established above, the bispectrum is a translation-invariant

quantity and hence the joint metric will be invariant to shifts of the same object.

The joint data-prior metric in Equation (2.4) can be minimized using a suitable non-

linear least-squares solver. For our processing, we have elected to use the MATLABr

implementation (MATLAB, 2012) of the trust-region reflective non-linear least-squares

solver.

2.5 Description of Stage 2 of Algorithm

Stage 2 takes the Fourier estimates obtained in Stage 1 and attempts to recover an image

using fast sparse-recovery (SR) techniques. This amounts to solving the linear, under-

determined inference problem:

2Since the rows of F are orthogonal, the pseudo-inverse is obtained by a Hermitian transpose operation F∗
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ŷ = F̃x + n (2.7)

where ŷ is the vector of Fourier estimates from Stage 1, F̃ is the partial-DFT matrix whose

rows are the complex-sinusoidal basis functions corresponding to the spatial frequencies

sampled by the array3, and n is the (unknown) residual error in these estimates. Since

in practice there are fewer available Fourier measurements than the desired number of

resolution elements in the image, this inference problem is ill-posed from a Nyquist-sampling

perspective. Hence once again we must regularize the problem by imposing constraints on

the image. We selected two different SR regularization strategies due to their widespread

success in solving similar inverse problems involving Fourier undersampling. The first

of these approaches, Basis Pursuit Denoising (BPDN), seeks to find the image of smallest

L1-norm which also agrees with the estimated Fourier component estimates to within a

certain tolerance ε. We performed this L1-minimization in the wavelet domain as opposed

to the pixel domain, as it is well-known that natural images tend to be more compressible

in the former domain than in the latter. The other regularization we tested, Total Variation

Minimization (TV-Min), is very similar, but seeks instead to minimize another quantity

known to be compressible in natural images: the L1-norm of the gradient of the image. The

two regularization techniques are specified mathematically below:

(Basis Pursuit Denoising): x̂ = arg min
α
‖α‖1 subject to:

∥∥∥FΨ−1α− ŷ
∥∥∥

2
≤ ε (2.8)

(Total Variation Minimization): x̂ = arg min
α
‖α‖TV subject to: ‖Fα− ŷ‖2 ≤ ε (2.9)

where ‖α‖TV is the L1-norm of the 2D pixel gradient of the image, i.e. ‖α‖TV :=

∑i,j ‖∇α[i, j]‖1.

3Note that F̃ need not be the same as F, as we are free to assume an independent pixel resolution in each
case. This resolution then specifies the granularity of the sampling of the sinusoids forming the rows of the
matrix.
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The software package NESTA (Becker et al., 2011) was used to perform the Stage 2

optimizations above.

2.6 Algorithm Performance

2.6.1 Laboratory Validation

To test the effectiveness of our algorithm when applied to real interferometric data, we

collected fringe data with MIT Lincoln Laboratory’s (MIT/LL) Fizeau Interferometer. The

interferometer is a reconfigurable fiber-coupled system that allows all (20
2 ) baseline conjugate

pairs to be measured simultaneously by projecting light from all apertures onto a Fizeau

beam-combiner. For our experiments, we used a 20-aperture compact, non-redundant

pattern of the Golay type (Golay, 1970). The pattern is shown in Figure 2.3. The ratio

r of the maximum baseline to the minimum baseline was 17 in both x and y spatial

coordinates. Hence the number of resolution elements required to uniquely specify our

diffraction-limited scene was (2r)2, yielding an undersampling ratio of ρ = 2∗190
(2∗17)2 ≈ 0.33.

The interferometer was illuminated with the far-field projection of a range of targets: chrome-

on-glass transparency masks were photolithographically-prepared and placed at the focus

of an f
12 three-mirror off-axis telescope. When the target is illuminated with the white light,

the far-field projection of the target is produced at the telescope aperture, where it can be

sampled. As a reference for reconstruction, we consider a reduction of the actual target to

the fundamental diffraction-limited resolution of the instrument as shown in Figure 2.4.

5000-frame reconstruction results are shown in Figure 2.5 for the following photoelectron

(pe) levels: (from left to right) 320e3 pe/aperture/frame, 54e3 pe/aperture/frame, and 15e3

pe/aperture/frame.

2.6.2 Simulation

In addition to the Laboratory validation, we also conducted 5000-frame simulations with

the same aperture pattern to compare algorithm performance in the presence of unknown
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Figure 2.3: Non-redundant Golay 20-aperture pattern (left) and corresponding UV-sampling (right)

Figure 2.4: Target chrome mask (left) and corresponding truth image at diffraction-limited resolution (right)

Figure 2.5: Image Reconstruction Results from Laboratory Validation
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Figure 2.6: Image Reconstruction Results from Simulations

atmospheric distortion against that if this distortion were known. Note that in the latter

atmosphere-oracle case, bispectrum formation is not required and direct SR reconstruction

from complex amplitudes is feasible. Hence this comparison allows a quantitative measure of

the reconstruction penalty suffered from bispectrum formation. Our comparative simulation

scheme is depicted in the block diagram in Figure 2.6.

We used two Image Quality Metrics to assess performance: the standard metric Normal-

ized Mean-Squared Error (NMSE) and the Structural Similarity (SSIM) metric (Wang et al.,

2004). The NMSE is defined as:

NMSE = 20 log
‖x̂− x0‖

x0
(2.10)

Neither metric captured the visual similarity of the raw reconstructions of our two-stage

algorithm relative to ground truth. To address this, we uniformly hard-thresholded each

of the raw reconstruction pixels before evaluating the metrics. Figure 2.7 shows our two-

stage reconstructions before thresholding (left), the same reconstructions after thresholding
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Figure 2.7: Image Reconstruction Results from Simulations

Figure 2.8: Algorithm Performance in Simulation

(middle), and the atmosphere-oracle reconstructions (right). Results from both a low-light-

level scenario (top row) and a high-light-level scenario (bottom row) are shown. Figure 2.8

uses NMSE and SSIM image quality metrics to quantify reconstruction performance for our

two-stage-algorithm reconstructions after thresholding (red), and the atmosphere-oracle

reconstruction (black). We see that the algorithm achieves performance close to that of the

atmosphere oracle for a wide range of light levels.
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Chapter 3

Pattern design criteria for uniqueness

in phase recovery

3.1 Citation to Work under Review

This chapter contains text and figures submitted for publication to the Monthly Notices of

the Royal Astronomical Society (MNRAS).

Kurien, B., Tarokh, V., Ashcom, J., Rachlin, Y. and Shah, V. (2016). Resolving phase

ambiguities in the calibration of redundant interferometric arrays: implications for array

design. Monthly Notices of the Royal Astronomical Society, (submitted, March 4, 2016)

3.2 Chapter Overview

We provide new results enabling robust interferometric image reconstruction in the presence

of unknown aperture piston variation via the technique of Redundant Spacing Calibration

(RSC). The RSC technique uses redundant measurements of the same interferometric

baseline with different pairs of apertures to reveal the piston variation among these pairs.

In both optical and radio interferometry, the presence of phase-wrapping ambiguities in

the measurements is a fundamental issue that needs to be addressed for reliable image
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reconstruction. In this paper, we show that these ambiguities affect recently-developed

RSC phasor-based reconstruction approaches operating on the complex visibilities, as well

as traditional phase-based approaches operating on their logarithm. We also derive new

sufficient conditions for an interferometric array to be immune to these ambiguities in

the sense that their effect can be rendered benign in image reconstruction. This property,

which we call wrap-invariance, has implications for the reliability of imaging via classical

three-baseline phase closures as well as generalized closures. We show that wrap-invariance

is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition.

For cases in which this condition is not satisfied, a simple algorithm is provided for

identifying those graph cycles which prevent its satisfaction. We apply this algorithm to

diagnose and correct a member of a pattern family popular in the literature.

Before we discuss phase-wrapping ambiguities, we first review a few key preliminary

mathematical notions from lattice theory in the next Section.

3.3 Preliminaries

3.3.1 Lattices

A lattice is a mathematical object describing a repeating pattern of discrete points in space.

It arises in a variety of scientific and engineering contexts including crystallography and

communication theory. We will define a lattice Λ as a linear combination of vectors in which

the coefficients are integers, i.e.

Λ =

{
m

∑
i=1

aivi | ∀ai ∈ Z

}
(3.1)

If the generating vectors vi are not linearly-independent, one might ask for another,

more compact description of Λ. Consider one such candidate set of linearly-independent

vectors bj. If all integer linear combinations of bj lie in Λ, and every lattice point in Λ can

be represented as an integer linear combination of the bj, then we say that the vectors vj

form a basis for the lattice Λ.
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Many lattice algorithms, including algorithms for the Closest Vector Problem introduced

in the next section, require a reduced lattice basis. A reduced basis is one consisting of vectors

which are short and nearly-orthogonal. A well-known procedure to create a basis for a

given lattice with short, nearly-orthogonal vectors is known as the LLL algorithm due to

Lenstra et al. (1982).

An LLL-based routine for forming a reduced lattice basis from a set of generating vectors

which are not necessarily linearly-independent is given in Cohen (1993).

3.3.2 The Closest-Vector-Problem

A well-known problem in lattice theory is the Closest-Vector-Problem, which can be described

as follows:

Problem 3.3.1. Given a basis {b1, b2, ..., bn} for a lattice in Rm and a vector w ∈ Rm, find the

point in the lattice closest in Euclidean distance from w.

Several algorithms exist for solving this problem. A popular class of algorithms, known

as the Sphere-Decoding algorithms, are efficient searches for the closest lattice point within

a hypersphere of a certain radius centered on the input vector (see e.g. Agrell et al. (2002)).

For the simulations in this chapter, we instead use the lower-complexity Babai Nearest

Plane (Babai-NP) algorithm (Babai, 1986). For lattice bases which are nearly orthogonal, this

algorithm offers reliable, albeit not guaranteed, performance in practice. Pseudo-code for

one implementation of this algorithm due to Galbraith (2012) is given in listing Algorithm 1.

Algorithm 1 Babai Nearest-Plane Algorithm
Input: Basis for lattice Λ (i.e. {b1, . . . , bn}), and w ∈ Rm

Output: Element v∗ nearest to w in Λ
Compute orthogonal basis {b∗1 , . . . , b∗n} using Gram-Schmidt procedure
for i = n downto 1 do

Set li =
〈wi ,b∗i 〉
〈b∗i ,b∗i 〉

Set yi = bliebi
Set wi−1 = wi − (li − blie)b∗i − bliebi

end for
return v = y1 + . . . yn
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A conceptual interpretation of this recursive algorithm is as follows. At the root level,

the algorithm finds the vector in Λ closest to w; in other words it solves the CVP problem

(Λn, w). First consider the subspace U spanned by the first n− 1 basis vectors, i.e. U =

span{b1, . . . , bn−1}. The algorithm begins by computing the translate y ∈ Λ of U closest

to w, i.e. the nearest plane to w. The algorithm then implicitly computes the projection

w′ of w onto this translate U + y. It then translates this projection back to the origin

(i.e. wn−1 := w′ − y), and solves the smaller problem within U, i.e. the CVP problem

(Λn−1, wn−1), where Λn−1 is the lattice formed by the first n− 1 basis vectors. The process

continues recursively until the final CVP problem with the lattice spanned by b1 is solved.

The final output is then the sum of the translates from each level of the recursion.

3.4 Problem Statement and Related Work

We have seen that unknown optical path differences (OPD) amongst the apertures in an

array, arising from atmospheric turbulence as well as non-idealities in the interferometric

system, present a fundamental challenge in interferometry. Moreover, we have seen that

while the bispectrum observable eliminates the OPD in interferometric measurements,

the ill-posed nature of Fourier phase recovery arising from the OPD terms persists. In

Chapter 2 we developed an algorithmic interface which regularizes the ill-posed problem of

recovering Fourier phase from the bispectrum by enforcing prior constraints on the image.

An alternative approach to prior-regularized reconstruction is to use baseline redundancy

to explicitly solve for OPD variation; an array with baseline redundancy contains repeated

instances of the same vector baseline involving distinct aperture pairs. Since Fourier phases

can be assumed to be equal for all repeated vector baselines, an observed difference amongst

their corresponding measurements exposes the contribution of the OPD. This idea of using

redundant arrays to calibrate out OPD variation, known as redundant spacing calibration

(RSC), was developed in works such as those by Arnot et al. (1985) and Greenaway (1990).

In recent years, innovation in optical technology has engendered a revival of interest in the

RSC technique. The simultaneous (or Fizeau-style) measurement of fringes on a common
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Figure 3.1: Fraction of redundant baselines required for critical redundancy vs. aperture count

focal plane has long been a popular method of acquiring many baseline measurements

in an economical manner. However, the Fizeau method had been incompatible with RSC

techniques since the fringes formed by each set redundant baselines would alias on the

focal plane. An elegant solution to this problem was proposed by Perrin et al. (2006). This

work developed the idea of segmenting the entrance pupil of a single telescope into an

RSC arrangement of sub-pupils from which the light was then coupled via single mode

fiber to a non-redundant exit pupil, thereby permitting unambiguous and simultaneous

fringe detection for an RSC array. A reconstruction algorithm for this architecture was

then proposed in Lacour et al. (2007). Even more recently, RSC has been implemented as

the calibration scheme of choice for several radio interferometers: the Donald C. Backer

Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa (see Ali

et al. (2015)), the MIT Epoch of Reionization (MITeOR) in the United States (see Zheng et al.

(2014)), and the Ooty Radio Telescope (ORT) in India (see Marthi and Chengalur (2014)).

As will be shown below, N − 3 independent redundant relations are required for unique

determination of atmosphere and Fourier phases - a condition we will refer to as critical

redundancy. An oft-cited drawback of the RSC approach is that it reduces the number of
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unique spatial frequencies measured by the interferometer. However, as Figure 3.1 illustrates,

the fraction of distinct uv-samples sacrificed for critical redundancy becomes increasingly

negligible as the number of apertures in the array increases. Nevertheless the RSC technique

presents other challenges which must be overcome for reliable imaging. Central among

these challenges is the problem of integer phase ambiguities which arise from the fact that

the interferometric phase is only known modulo 2π. Indeed these ambiguities have been

shown to play an important role in accurately recovering sensor complex gains and object

complex visibilities while imaging with real interferometric instruments (see e.g. Liu et al.

(2014), Eastwood et al. (2009)). In this chapter, we describe these ambiguities and how they

can be mitigated using a combination of lattice theory algorithms and careful array design.

We will see that these ambiguities have a fundamental presence; namely, they exist whether

the calibration strategy works with complex visibilities (which we call the Phasor approach)

directly, or their respective logarithms (which we call the Phase approach). To the best of

our knowledge, the results in this chapter are the first to provide array conditions allowing

unambiguous interferometric phase determination in spite of wrap ambiguities in the Phase

approach, and corresponding false minima in the objective of the Phasor approach.

To motivate the analysis in the chapter, we provide an example illustrating the effect

that wrap ambiguities can have in RSC-based image reconstruction. Consider the pattern

depicted in the Figure 3.2. This pattern belongs to one of the more popular array classes in

the interferometry literature: the so-called Y-patterns (see e.g. Arnot et al. (1985), Blanchard

et al. (1996), Labeyrie et al. (2006), Eastwood et al. (2009), Liu et al. (2014)). The corresponding

spatial, or UV, sampling is provided in the right panel of the Figure.

To demonstrate the potential effect of wrap ambiguities on reconstruction, we simulated

both Phase- and Phasor-based reconstruction from noiseless measurements with this pattern.

The results are shown in Figure 3.3. The upper left panel shows the true image, and the

upper right panel shows the inverse Fourier transform of the UV-sampled visibility function

of the object (i.e. the so-called dirty, or interferometric image). The lower left panel shows the

reconstruction result with an implementation of the Phase method similar to that developed
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Figure 3.2: Y-pattern Array Example

by Lannes (2003), and the lower right panel shows the same for an implementation of the

Phasor method (Marthi and Chengalur, 2014) (Lacour et al., 2007). Reconstruction suffers

from phase wrapping error in the former case, and a corresponding false-minimum trap

in the Phasor case. In the course of this chapter, we will first identify this ambiguity from

a mathematical perspective, relate it to a particular physical structure (i.e. the existence

of a certain type of loop in the interferometric graph), and provide a simple algorithm for

identifying such structures in an arbitrary array so that they can be remedied.

The chapter is organized as follows. In Section 3.5, we review previous work on the

integer ambiguity problem, and discuss its presence in the Phase approach. We provide

new mathematical conditions for an aperture pattern to be wrap-invariant, meaning that

the effect of the 2π-periodicity of the measured interferometric phase can be eliminated

in image reconstruction. These results are founded upon techniques from lattice theory,

as well as the well-known Smith Normal Form (SNF) of an integer matrix. We show the

implications of these results on imaging with three types of interferometric observables:

the baseline phase measurements, their traditional closure phases, and generalized closure

phases. In Section 3.6, we relate these mathematical conditions to conditions on the aperture

pattern itself. Namely we show that wrap-invariance is conferred upon arrays satisfying a
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Figure 3.3: Reconstruction Results for Y-Pattern Example
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certain loop-free condition. As an illustrative example, we diagnose a pattern belonging

to the popular Y-pattern class and remedy it to be loop-free. In Section 3.7, we show that

the computationally-complex SNF-based approach for ambiguity resolution is actually not

necessary for wrap-invariance in many cases, as long as a wrap-induced image shift can be

tolerated 1. For such scenarios, we show that wrap-invariance provides a certificate for the

success of existing Phase and Phasor-based approaches in avoiding wrap-induced errors

in the former, and false global minima in the latter. Finally we summarize our results in

Section 3.8.

3.5 Phase Wrapping Ambiguities in RSC Image Reconstruction

In this Section, we describe a Phase Approach algorithm leveraging the CVP-approach for

phase-wrap resolution, which to the best of our knowledge was first developed in Lannes

and Anterrieu (1999). We begin by identifying the fundamental phase ambiguity, and

subsequently assess its impact on the phase error in the RSC phase solution. In the process,

we develop mathematical conditions for wrap-invariance which will form the basis for the

notion of a wrap-invariant pattern in Section 3.7. Finally, we assess our results in the context

of similar results for approaches requiring the use of closure phases (Lannes, 2003).

3.5.1 Identifying the Fundamental Phase Ambiguity

The traditional approach to RSC reconstruction operates on the measured baseline phases

(see e.g. Arnot et al. (1985), Greenaway (1994)). To illustrate the approach, let us consider an

interferometer which operates at a wavelength λ with two apertures (say, i and j) separated

by a vector baseline distance of bij. In the absence of any optical path difference, the

interference pattern formed by these two apertures encodes a sample of the object’s Fourier

Transform at spatial frequency bij
λ . Let the true Fourier phase (which we will refer to as

1As will be shown, this image shift is distinct from the fundamental degeneracy of object position in
interferometric measurements
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object phase), measured by this interference pattern be denoted as θij. The measured phase is

given by:

βij = θij + φj − φi + 2πe (3.2)

where φj − φi is the optical path difference between apertures j and i, and e is unknown

phase wrap integer arising from the fact that interferometric phase measurements are only

known modulo 2π.

Consider an interferometric array which simultaneously makes many such measurements

amongst its N apertures. Suppose that of the array’s (N
2 ) baselines, d of them are distinct.

Further suppose we have a solution set {φi} and {θij} for these equations. Let ri denote the

vector position of the i-th aperture. As noted by several authors (see, e.g. Wieringa (1992)),

we can obtain another valid solution set simply by replacing each φi with φ
p
i = φi + φ0 + z · ri,

and each θij with θ
p
ij = θij − z · (rj − ri), for arbitrary φ0 and z. Since the free vector z is a

two-parameter vector representing the inherently-ambiguous position of the image within

the Field-of-View and the free parameter φ0 is simply a scalar piston offset, the kernel of the

RSC system is three-dimensional. This is the tilt-position degeneracy which is fundamental in

interferometric reconstruction. The end result is that the RSC system contains d unknown

distinct object phases and N unknown aperture pistons, and is rank-deficient by at least

3. This implies that there are at most (d + N − 3) linearly-independent equations in the

RSC system, and hence at most N − 3 redundant relations can be linearly-independent.

Remaining relations can be expressed as linear combinations of the elements in this set.

A commonly-used simple example of such dependencies (Greenaway, 1994) is shown in

Figure 3.4. The phase measurement β34 associated with the baseline b34 can be expressed as

a linear combination of those associated with the other baselines, i.e. β34 = β12 − β13 + β24.

We will assume for the remainder of the chapter that our array contains N − 3 indepen-

dent relations. Under this assumption, we could in principle solve for a particular solution

of this system by arbitrarily setting two object phases (whose spatial frequencies are not

co-linear) and one piston phase. This particular solution would then differ from the true
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Figure 3.4: Example: Dependent Parallelogram redundancy.

Figure 3.5: Example: 5-aperture RSC pattern. The six distinct baselines are shown.

solution by a phase ramp in the Fourier domain, corresponding to an image shift in the

spatial domain. In this section we will instead construct a different particular solution which

is immune to the effects of phase-wrapping by design.

As an example, consider the simple array in Figure 3.5. There are (5
2) = 10 baselines, of

which 4 are redundant. A critical array of 5 apertures would have 2 redundancies. Therefore

this array possesses more redundancies than necessary (call it strongly redundant), and we

anticipate that the resulting system will be overdetermined.

The measurement equations associated with this array can be written in matrix form:
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

1 0 0 0 0 0 1 −1 0 0 0

0 1 0 0 0 0 0 1 −1 0 0

0 0 1 0 0 0 0 0 1 −1 0

0 0 0 1 0 0 0 0 0 1 −1

0 0 0 0 1 0 1 0 −1 0 0

0 0 0 1 0 0 0 1 0 −1 0

0 0 −1 0 0 0 1 0 0 −1 0

−1 0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 1 0 1 0 0 −1

0 1 0 0 0 0 1 0 0 0 −1





θ12

θ23

θ34

θ45

θ13

θ25

φ1

φ2

φ3

φ4

φ5



= β + 2πe (3.3)

Denoting the matrix above as M, we can write such systems in compact form as:

M

 θ

φ

 = β + 2πe (3.4)

The example above illustrates that the general phase measurement matrix will have two

sets of columns: one corresponding to the object phases, and one corresponding to the path

differences. We can divide the range of the matrix into two respective subspaces as follows:

Definition 3.5.1. Two fundamental subspaces (Lannes and Anterrieu, 1999): The spectral

phase space K is the span of the d columns associated with the Fourier phases, or equivalently

the range of the sub-matrix Mθ formed by these columns. The piston, or aberration, phase

space L is the span of the Nap columns associated with the piston phases, or equivalently

the range of the sub-matrix Mφ formed by these columns.

If we let n = (N
2 ) be the number of baselines in the array, the phase measurement matrix

M will be of size n× (d + N). For a strongly-redundant array like the one in the example

above, the column-space K + L of the matrix will clearly not span Rn. Therefore the wrapped

measurement vector β will not in general fall in the the subspace K + L (and potentially
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can be quite far from it). In the absence of measurement noise, we can unwrap these

measurements by identifying those integer correction vectors e for which β∗ = β + 2πe

lies in K + L. In the presence of noise, on the other hand, the unwrapped vector will not

generally lie in K + L (but for low-to-moderate noise will be in the vicinity). Thus we search

for vector(s) β∗ which are as close to K + L as possible in a weighted least-squares sense

(Lannes and Anterrieu, 1999), i.e. we search for the vector

τRSC =

 θ̂RSC

φ̂RSC

 = argmine,θ,φ

∥∥∥∥∥∥∥W

β∗(e)−M

 θ

φ



∥∥∥∥∥∥∥

2

(3.5)

where W is the weighting matrix. If we let Σ denote the phase measurement covariance

matrix and set W = Σ−1, this is equivalent to searching for vectors e which minimize the

projection of a whitened measurement W
1
2 β∗ = W

1
2 (β + 2πe) onto the space (K + L)⊥W :=

ker((W
1
2 M)

T
), where ker(A) denotes the kernel, or nullspace, of the matix A.

Specifically we seek to minimize:

f (e) = ||PWW
1
2 (β + 2πe)||

2
(3.6)

where PW is a matrix representing the orthogonal projection from Rn onto (K + L)⊥W.

Letting e′ = −e, we can rewrite the above objective function as:

f (e′) = ||PWW
1
2 (β− 2πe′)||

2
= ||PWW

1
2 β− 2πPWW

1
2 e′||

2
(3.7)

Lannes and Anterrieu (1999) showed that this optimization problem is equivalent to the

so-called closest vector problem (CVP) in the theory of lattices. We will define a lattice L(Zn)

as the set of points generated by integer combinations of the column vectors of a matrix

L. Letting P̃ = PWW
1
2 , our optimization problem then amounts to the following: Find the

lattice point in P̃(Zn) which is closest to P̃β. Indeed this CVP formulation applies in a very

general sense to phase-unwrapping problems taken collectively as discussed in Wubben

et al. (2011).

A compact representation of the lattice Γ is given by:
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Γ =

{
m≤n−(d+N−3)

∑
i=1

aivi | ∀ai ∈ Z

}
(3.8)

where {vi} are linearly-independent and together form a basis of the lattice.

Suppose we have found a basis for the lattice P̃(Zn), and we have solved the Closest

Vector Problem for a given measurement vector β (c.f. Section 3.3.2). Let b∗ be the output

of the Babai Nearest Plane Algorithm - i.e. it is the lattice point which is the closest to β.

We now seek to solve for the wrap vector corresponding to this lattice point, i.e. we seek a

solution to:

b∗ = P̃ê (3.9)

Note that P̃ is a (weighted) projection matrix and thus not full-rank, and therefore there

will be infinitely-many solutions to this equation. The Closest-Vector-Problem algorithm

will provide one particular solution ep. The complete set of solutions is then given by:

ê = ep + eh (3.10)

where eh is any integer vector in the kernel of P̃. Suppose we choose one such vector eh

and correct our phase measurement vector accordingly. The corrected phase measurement

vector can be written as:

β̂
∗
= β + 2π(ep + eh) (3.11)

Lemma 3.5.1. eh ∈ K + L, ∀eh

Proof: The fact that eh ∈ ker(PWW
1
2 ) implies that W

1
2 eh ∈ ker(PW). This in turn implies

that W
1
2 eh ∈ im(W

1
2 M) and hence that eh ∈ im(M) since W

1
2 is invertible by construction.

�

While any choice of eh ∈ K + L will admit a solution to Equation (3.5), let us consider

the optimal one eh,0 which minimizes the error in the ultimate phase solution τRSC. Let

β∗0 = β + 2π(ep + eh,0) be the corresponding, optimal unwrapped measurement vector.

From Lemma 3.5.1, we see that the unwrapped vector β̂
∗

differs by some 2πe∗h in K + L
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from β∗0 , i.e.

β̂
∗
= β∗0 + 2πe∗h (3.12)

The impact of this fundamental ambiguity is the main subject of this chapter. We have

depicted the situation in Figure 3.6 to provide a visual summary of the linear algebra

involved. As we have seen, the RSC process begins with the interferometric phase mea-

surement β, which due to wrapping will in general lie far from the range K + L of the

measurement matrix. By solving the Closest-Vector-Problem using a lattice algorithm such

as the Babai Nearest Plane algorithm, it is possible to find a particular correction vector

2πep which when added to β minimizes the residual in Equation (3.5), i.e. the weighted

distance from K + L. In the noiseless case, this unwrapped vector β̂
∗

will lie in K + L (i.e.

zero residual), whereas in the noisy case, it will in general remain outside of K + L.2. In

either case, the choice of the residual-minimizing vector β̂
∗

is not unique. To see this, let

the smallest possible residual norm among all unwrapped candidates be denoted as rmin.

The set of unwrapped measurement vectors rmin away from K + L can be represented as

discrete points in a plane parallel to K + L, each of which corresponds to a distinct choice of

ep. Within this family, consider the optimum vector β∗0 whose corresponding least-squares

solution τRSC has minimal error. Any choice of an unwrapped vector in Equation (3.11) is

within an error vector 2πe∗h of β∗0 , where e∗h is an integer vector in K + L. RSC algorithms are

fundamentally blind to such errors; distinct unwrappings β̂
∗

and β∗0 both produce solutions

to Equation (3.5) in the noiseless case, as do their respective projections onto K + L, β̂
∗
K+L

and β̂
∗
0,K+L, in the noisy case. The property of wrap-invariance introduced in this chapter

ensures that the effect of such an error on the phase of the resulting RSC solution τRSC is

either: merely a benign integer multiple of 2π (c.f. Section 3.5.2), or a linear gradient in the

estimated Fourier phases, which is equivalent up to an extra image shift (c.f. Section 3.7) in

the reconstructed image. In order to develop conditions for wrap-invariance as they relate

to pattern design, we must first characterize the effect of the residual wrap error on the RSC

2Without loss of generality, we have selected eh = 0 in Equation (3.10) so as to simplify the diagram
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Figure 3.6: Illustration of the fundamental ambiguity of 2π-periodicity in RSC imaging. Distinct unwrap-
pings β̂

∗
and β∗0 both produce solutions to Equation (3.5) in the noiseless case, as do their respective projections

onto K + L, β̂
∗
K+L and β̂

∗
0,K+L, in the noisy case.

least-squares solution. This is the aim of the next section.

3.5.2 Quantifying the Effect of the Fundamental Ambiguity

Let us now quantify the effect of this unresolved wrap error on the ultimate least-squares

solution, which can be accomplished in two easy steps. Following standard least-squares

principles, we first find the projection β̂
∗
K+L of the unwrapped β̂

∗
onto K + L whose weighted

distance from β̂
∗

is minimized. Note that the e∗h term in β̂
∗

is already in K + L and hence

unchanged by projection. Hence we obtain:

β̂
∗
K+L = W− 1

2 (I− PW)W
1
2 β̂
∗
= β∗0,K+L + 2πe∗h (3.13)

where β∗0,K+L is the projection of β̂
∗

onto K + L. We then solve the system:

M

 θ

φ

 = β̂
∗
K+L (3.14)

As aforementioned, M is rank-deficient (by 3), and hence there will be infinitely-many
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solutions to this system. Successful recovery of the Fourier phases modulo 2π requires a

solution preserving the integrality of the error term e∗h. In this case, we obtain a final RSC

solution 2πc away from the true solution for some integer vector c. To achieve this, we rely

on the integer matrix decomposition known as the Smith Normal Form, which is described in

the following Theorem and Lemma:

Theorem 3.5.2. (Smith Normal Form) (Smith, 1861): Let A be a nonzero m× n integer matrix

with rank r. There exist integer and unimodular 3 (and thus invertible) matrices m×m and n× n

matrices U and V respectively such that the matrix product D = UAV is a diagonal matrix whose

diagonal entries Dii (the so-called elementary divisors) are non-zero integers for i ≤ r, and zero for

i > r. Moreover, the matrices U {and respectively, the matrix V} represent the row {and column}

operations which zeroize A below {and above} the diagonal.

Theorem 3.5.3. (Elementary Divisors) (Smith, 1861): The product of the elementary divisors is the

greatest common divisor (gcd) of all r× r minors of A.

The proof of the Theorems above can be found in textbooks such as Newman (1972). �

Let us compute the Smith Normal Form (SNF) {U, D, V} of our matrix M. Let UM = U−1

and VM = V−1 so that we can write:

M = UMDMVM (3.15)

where the r diagonal elements {di} of DM are the elementary divisors of M.

We can now re-write Equation (3.14) above as:

DMVM

 θ

φ

 = U−1
M β̂

∗
K+L (3.16)

Let us choose the following particular solution to Equation (3.16):

τRSC = V−1
M D+

MU−1
M β̂

∗
K+L (3.17)

3A unimodular matrix is one whose determinant is ±1
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where D+
M denotes the pseudo-inverse of D. The resulting error is then:

eRSC = V−1
M D+

MU−1
M e∗h (3.18)

Lemma 3.5.4. Let u = U−1
M e∗h . The residual wrap error eRSC equals~0 mod 2π if and only if

mod (ui, di) = 0, ∀i ≤ r. The proof of this Lemma is an adaptation of a standard proof which can be

found in most textbooks covering linear Diophantine equations (see, e.g. Newman (1972)).

�

From this Lemma, the following Corollary is clear:

Corollary 3.5.5. (Sufficient condition on SNF of RSC matrix for wrap-invariance): If the

elementary divisors of the measurement matrix M corresponding to a certain aperture pattern are all

1, the RSC solution defined by τRSC is immune to phase-wrapping error.

�

RSC patterns consisting of apertures placed randomly on a Cartesian grid appear to

satisfy this sufficient condition with high probability. We conducted a simple experiment

in which 15 apertures were randomly placed on a 10× 10 grid. Out of 256 placements, 66

were valid RSC patterns (i.e. possessed at least critical redundancy), and of these, only 2

had non-unity elementary divisors.

3.5.3 Relation to closure-phase approaches

The SNF has been been applied to the RSC phase problem before (Lannes, 2003). Whereas

we have chosen to apply SNF directly to the baseline measurement matrix, the approach

taken by Lannes (2003) is to instead treat the piston-invariant phases of the bispectra (the

so-called closure phases) as the fundamental observables from which the object phases can be

inferred via the relation:

Co→c~θ = ycl + 2πecl (3.19)
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where ycl are the wrapped closure phases, ecl is the corresponding wrap vector, and Co→c is

the matrix mapping the distinct object phases in the array to closure phases.

Using closure phases as observables can be advantageous in low-light scenarios in which

there is not sufficient SNR in a single atmospheric coherence time to reliably measure the

baseline phases. To overcome this low per-frame SNR, atmosphere-invariant observables

such as the bispectra can be integrated over many frames to build sufficient SNR, and their

respective closure phases used as reliable phase measurements. Since the baseline phases

are known modulo 2π, the linear combinations of them which comprise the closure phases

are also known modulo 2π.

Lannes (2003) applies the SNF to the closure matrix Co→c. By direct analogy to Corollary

3.5.5, note that if the elementary divisors of Coc are all 1, then the RSC solution is immune

to phase-wrapping error. Otherwise, severe distortion is possible in the resulting image

reconstruction. In order to relate this condition to Corollary 3.5.5, let us first define another

closure matrix Cm→c which instead maps the phase measurements to closure phases. This

mapping consists of equations of the form:

y123 = β12 + β23 − β13 (3.20)

where y123 is the closure phase associated with apertures 1, 2, and 3, and the βij are the

associated baseline phases (see Equation (3.2)). Of the (N
3 ) possible closure phases, at most

(N−1
2 ) can be linearly-independent (see e.g. Readhead et al. (1988)). One commonly-chosen

set of such linearly-independent relations consists of all the closure triangles involving

a given aperture A, and this is the set selected by Lannes (2003). Cm→c is therefore an

(N−1
2 ) × (N

2 ) matrix. Lannes (2003) accordingly provides a convenient grouping of the

baselines into two categories: (1) spanning tree baselines which connect aperture A to all

other apertures, and (2) loop entry baselines which provide the closure for these spanning

tree baselines. This categorization is depicted in Figure 3.7.
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Figure 3.7: Distinction between spanning tree baselines (thick, solid) and loop entry baselines (thin, dotted)

Given this categorization, we can decompose Cm→c into corresponding blocks as:

Cm→c =

[
Ĉm→c I(N−1

2 )

]
(3.21)

where Ĉm→c contains the spanning tree contributions to the matrix (which appear in

multiple closures), and I(N−1
2 ) is the (N−1

2 )× (N−1
2 ) identity matrix representing the loop-

entry contributions (each of which appears in only one closure). The following property

follows from this block form expression:

Lemma 3.5.6. The elementary divisors of Cm→c are all 1.

Proof: Since we have chosen a linearly-independent subset of closure relations, r =

rank(Cm→c) = (N−1
2 ). There exists a r × r minor (namely, I(N−1

2 )) which is equal to 1.

Therefore the gcd of all r× r minors is 1, and therefore from Theorem 3.5.3 (Elementary

Divisors), all elementary divisors must be 1. �

Let us now relate Cm→c to the matrix Co→c used by Lannes (2003). Recall from the

discussion of bispectra in Section 3.4 that the closure relations eliminate piston differences

in the measurements so that Cm→c annihilates the subspace L, i.e. the space spanned by

the columns of M corresponding to ~φ. Defining Mθ as the submatrix of M containing the

columns corresponding to ~θ, we have

Cm→cM

 θ

φ

 =

[
Co→c 0

]  θ

φ

 (3.22)
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where Co→c = Cm→cMθ . Co→c is an (N−1
2 )× d matrix which is rank-deficient by two 4.

Then by direct analogy to Equation (3.14), we can obtain valid RSC object phase solutions

by solving:

Cm→cM

 θ

φ

 =

[
Co→c 0

]  θ

φ

 = y∗cl + 2πe∗h,cl (3.23)

where y∗cl is the true unwrapped closure vector and 2πe∗h,cl is the residual integer wrapping

error vector after applying the Babai NP algorithm to solve the CVP problem associated with

matrix Cm→cMθ and 2πecl . Note that if we find a vector ~θ∗ satisfying Equation (3.23), it will

clearly also satisfy the relation Co→c~θ∗ = y∗cl + 2πe∗h,cl of Lannes (2003). Note furthermore

that we can solve the equation above in two separate integer-preserving steps of the form

of Equation (3.17), the first involving the SNF decomposition of Cm→c, and the second

involving that of M. Since the elementary divisors of Cm→c are all 1 by construction (by

Lemma 3.5.6) and hence the first step is thus integer-preserving, wrap-invariance again

amounts to whether or not all elementary divisors of M are 1. Therefore we have the

following Proposition relating wrap invariance for closure measurements to that for raw

phase measurements:

Proposition 3.5.7. (Sufficient condition for wrap-invariance of closure-based RSC): If the

elementary divisors of the phase measurement matrix M are all 1, then the closure-based RSC solution

will be wrap-invariant.

Proof: (see Appendix B.1) �

We remark in passing that although the preceding analysis was presented in the context

of the traditional three-aperture closure, it applies directly to the case of closures involving

an arbitrary number of sides. As an example, consider the pattern shown in Figure 3.8. A

spanning tree for the pattern consisting of the short baselines in an array is depicted. Let

{φsp} denote the aperture phase differences in these N − 1 spanning tree baselines. Note

4To see this, note that each solution set to Equation (4.49) above remains valid after replacing each θij with
θ

p
ij = θij − z · (rj − ri)
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Figure 3.8: Bootstrapping phase of a low-SNR baseline (green) with subset (blue) of high-SNR baselines from
spanning tree baselines (black)

that all aperture phase differences in the array can be expressed as linear combinations

of the {φsp}. If the aperture phase differences are known reliably via measurements of

the spanning tree baselines, we can use these measurements to cancel the aperture phase

differences in all other measurements (of which one example is shown in green). The

idea of using such generalized closure phases (Martinache, 2010) is indeed the mathematical

foundation for the promising technique known as baseline bootstrapping in which high-fidelity

phase measurements of several high-SNR baselines (typically the short baselines) to cancel

the atmosphere on each lower-SNR (and hence lower fidelity) baseline.

Note that for an arbitrary N-aperture pattern, there will in general be N − 1 spanning

tree baselines and thus (N
2 ) − (N − 1) = (N−1

2 ) generalized closures, each involving a

distinct closing (or loop-entry) baseline. Therefore the resulting measurement matrix can be

expressed exactly as in Equation (3.21) above and hence the preceding analysis holds.

While this section has considered a few possibilities for phase observables, relating

mathematical conditions for wrap invariance to a physical condition on aperture placement

is more intuitive when considering the raw phase measurements as opposed to their closures.

For this reason, for the remainder of the chapter we will work directly with the baseline

phases and their associated wrapping errors. In particular, we will begin by connecting

these wrapping errors with analogous ambiguities in recently-developed phasor-based

approaches.
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3.6 Implications of Wrap Ambiguities on Pattern Design

In this section we use the mathematically-sufficient conditions for wrap invariance from

the previous section to show that aperture patterns whose interferometric graph satisfies a

certain loop-free condition are wrap-invariant. Here we define the interferometric graph in

the standard way: it is simply the graph formed by connecting the array’s apertures (the

nodes of the graph) with edges representing the array’s baselines.

This condition is founded on the Theorem 3.5.3 (Elementary Divisors) in Section 3.5 and

the following definition of the matrix determinant. This definition is given in many linear

algebra texts (see e.g. Bretscher (2001)).

Definition 3.6.1. Matrix Determinant in terms of patterns: Suppose we have an n × n

matrix A. Define a pattern as a selection of n entries of the matrix in which there is only one

chosen entry in each row and one in each column of the matrix. Furthermore, we denote a

pair of numbers in a pattern as inverted if one of them is located above and to the right of

the other. Then we can obtain the determinant of A by summing the products associated

with all patterns with an even number of inversions and subtracting the products associated

with all the patterns with an odd number of inversions.

Consider a r× r sub-matrix M̃I consisting of a set I of linearly-independent rows in M

and d + N − 3 linearly-independent columns. Our goal will be to find conditions under

which such a sub-matrix contains only one pattern with a non-zero product, in which case

the determinant will be ±1 from the definition above. This will guarantee, by the Theorem

3.5.3 (Elementary Divisors) of the previous section, that the elementary divisors of M are all

1, which will in turn ensure that the error in the RSC solution τRSC will be 0 mod 2π by

Corollary 3.5.5.

We begin our search for such a matrix by forming the intermediate r× (r + 3) matrix

MI consisting of I linearly-independent rows in M, and define the corresponding sub-graph

G containing only the baselines corresponding to these rows. In particular, let us examine

the pattern restrictions encountered if we select a given column in MI for participation in
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our r× r sub-matrix M̃I . Namely, we will sequentially identify those special matrix entries

which must be part of a pattern with a non-zero product. For example, all non-redundant

measurements contain a singleton ±1 in the column associated with their object phase. All

non-zero patterns must clearly contain this ±1 and so we can select these singleton object-

phase entries as guaranteed participants in a non-zero pattern. Moreover, all measurements

containing a leaf node (i.e. a node with a single connection) in G contain a singleton ±1 in

the column associated with their leaf node. All non-zero patterns must clearly contain this

±1 as well. Thus we can also select these leaf node entries as guaranteed participants in a

non-zero pattern.

There may be cascading implications of such singleton measurements. To illustrate this,

consider the scenario shown in Figure 3.9. A simple RSC array is shown on the left. A

subset of the baselines in one possible linearly-independent sub-matrix MI is depicted. A

simplified depiction of the matrix MI is shown in which all non-zero entries have been

colored black and all zero entries have been colored white for simplicity. In Step A of the

reduction process, object phase θ5 is selected for participation since it is a singleton object

phase. Its corresponding row (i.e. row 5) in MI is then eliminated from participation since

the remaining entries in this row cannot participate in a pattern (by definition of a pattern).

In Step B, the aperture 6 entry φ6 in row 9 is selected since it has become a leaf node in

the pattern, and row 9 can then be eliminated. Then in Step C, object phase θ4 is then

selected by virtue of becoming a singleton object phase, and row 4 is then eliminated. This

selection/elimination process can be repeated beyond the steps shown in the Figure, until

either no leaf nodes and singleton object phases remain, or there are no baselines left to

eliminate. We formalize the pattern reduction process in the listing Algorithm 2.

We can see that any baseline in an interferometric graph which does not belong to a loop

will be eliminated in the reduction process. The only structures in the graph that persist

after this reduction are sets of loops with a certain property. Namely we define a persistent

loop set as a set of loops that contains at least two instances of every baseline contained in

the set. (A set can consist of any number of loops, including one). With this definition,
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Figure 3.9: Example: Reducing an aperture pattern and associated matrix to identify Persistent Loop(s)

Algorithm 2 Pattern Reduction Algorithm

Require: R {where R is the set of the baselines corresponding to MI , where I denotes the
indices of a linearly-independent subset of d + N − 3 rows of M}
while |R| > 0 do

1. Leaf Nodes
1.1 remove any remaining baselines containing leaf nodes from R
1.2 add the associated apertures to the list N
2. Singleton Object Phases
2.1 remove any remaining baselines containing singleton object phases from R
2.2 add the associated object phases to the list O
if no baselines removed in the current iteration then

return PERSISTENT
end if

end while
return LOOPFREE
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absolute invariance may be possible if the graph of the redundant baselines does not contain

any persistent loop sets. Algorithm 2 returns PERSISTENT if persistent loops exist and

LOOPFREE if the pattern is completely reduced and therefore free of persistent loops.

Note that in the latter case, we will have eliminated r rows from MI . Since each baseline

elimination is associated with object phase or aperture selection from distinct columns, and

MI contains r + 3 columns, there will be exactly three extraneous columns not involved

in the reduction process. The r × r submatrix obtained by selecting the non-extraneous

columns (i.e. those corresponding to the selected object phases and leaf nodes in O and

N, respectively) will then have a determinant of ±1 by virtue of having a single non-zero

pattern revealed by the reduction process. Having ensured the existence of a unit r × r

minor, the gcd of all r × r minors must be 1. We have hence confirmed the elementary

divisors must be all 1, and thereby ensured that the pattern is wrap-invariant (c.f. Theorem

3.5.3 (Elementary Divisors), and Corollary 3.5.5). We summarize the sufficient condition as

follows:

Proposition 3.6.1. (Sufficient conditions on aperture pattern for wrap-invariance): Consider

the graph of an aperture pattern which contains d distinct baselines and any set of N − 3 linearly-

independent redundant baselines. If this graph does not contain persistent loop sets (in the sense

defined above), the matrix M̃I formed by these independent measurements will have determinant ±1.

As a result Corollary 3.5.5 will hold, thereby guaranteeing that RSC solution τRSC will be invariant

to wrapping of the phase measurements.

We have hence arrived at a a physical definition of a wrap-invariant pattern. We now

apply Algorithm 2 to the example pattern shown in Figure 3.2. Algorithm 2 reduces the

pattern to the persistent loop set shown in Figure 3.10.

The elementary divisors of the pattern’s measurement matrix are not all 1; they are all 1

except for a singleton 3 and hence det(M̃I) mod 3 = 0 for all choices of M̃I .

Having traced the distortion induced by phase wrapping to physical property of the

array itself, we now return to Figure 3.3. The lower left panel shows the reconstruction result

with the SNF-based Phase method described in Section 3.5. The closure phase approach
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Figure 3.10: Persistent Loop set at center of pattern in Figure 3.2

yields the same corruption in reconstruction, as the elementary divisors of Coc are also all 1

except for a singleton 3.

There are several simple ways to amend this pattern so that it is wrap-invariant. While

the most intuitive of these involve moving the apertures involved in the persistent loop

shown in Figure 3.10, these approaches leave gaps in the UV-sampling pattern. An alternate

approach that preserves the UV-sampling is to add an aperture to the center of the pattern

as shown in Figure 3.11. This results in additional linearly-independent redundancies

colored in blue and green, respectively, in the Figure. These additions replace baselines in

the persistent loop, allowing this loop to be broken. With wrap-invariance, reconstruction

results match the true image in both the phase and phasor approaches as respectively shown

in Figure 3.12. In the top row, reconstruction results are displayed for the phase (left) and

phasor (right) approaches for the noiseless case. The image distortion present in Figure

3.3 has been completely eliminated by tweaking the pattern so that it is wrap-invariant.

Analogous results for an SNR of 25 dB are displayed in the bottom row. Here we define

SNR as the ratio of the phasor magnitude at visibility 1 (i.e. zero spatial frequency) to the

standard deviation of the noise, which we have assumed to be complex Gaussian and i.i.d.

across spatial frequency for this simulation.
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Existing Apertures
Added Aperture
Loop-Eliminating Baseline Pair 1

Loop-Eliminating Baseline Pair 2

Figure 3.11: Amended Pattern

Phase Approach (Noiseless) Phase Approach (SNR = 25 dB)

Figure 3.12: Reconstruction Results for Amended Pattern
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3.7 Wrap-invariance and Practical RSC Calibration

In previous sections we established that the Phase Approach can be made robust to phase-

wrapping using the Smith Normal Form (SNF) and algorithms from lattice theory. Moreover,

the SNF provided a mathematical framework for the notion of wrap-invariance. From a

practical standpoint, however, computation of the Smith Normal Form is likely to become

a computational burden for large arrays, as in those under current consideration with

Nap ≈ 102 and n ≈ 104 baselines (Zheng et al., 2014). Techniques not requiring such a

computation are hence of strong practical interest. In this section we show that the wrap-

invariance property checked by Algorithm 2 provides a certificate for reliable reconstruction

with such techniques, in the presence of the fundamental 2π-periodicity of interferometric

measurements.

3.7.1 Practical Phase Approaches

Our approach here will rely upon the well-known Singular Value Decomposition (SVD) of

the measurement matrix M, which is given by:

M = UσΣσVT
σ (3.24)

in which Uσ and Vσ are m×m and (d + N)× (d + N) orthogonal matrices, respectively.

Σσ is a m× (d + N) diagonal matrix with r non-zero diagonal entries (the so-called singular

values of M), where r = rank(M) = d + N − 3.

Lemma 3.7.1. The final 3 columns of Vσ form a basis for the nullspace of M.

Proof: This follows from the fact M is rank-deficient by 3, and standard properties of the

right singular vectors comprising Vσ in the SVD. (Bretscher, 2001) �

Now recall that in Section 3.4, we provided an one particular, SNF-based, solution to

Equation (3.14). Here we instead consider the complete set of solutions to this Equation,

which is given by:
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τσ = M+(β̂
∗
0,K+L + 2πe∗h) + τ0 (3.25)

where τ0 is any vector in the nullspace of M, and M+ denotes the pseudo-inverse of M,

whose matrix elements are derived directly from the SVD above.

M+ = VσΣ+
σ UT

σ (3.26)

where Σ+
σ is a (d + N)×m diagonal matrix whose r non-zero diagonal entries are the

reciprocals of the corresponding non-zero entries in Σσ.

Typically Phase Approach techniques implicitly select a particular solution from the

family of solutions in Equation (3.25) via augmenting the matrix M with additional con-

straints. The most common among these (Wieringa, 1992) (Wijnholds and Noorishad, 2012)

is to enforce that: ∑ φ = 0, ∑ φiri = 0, where ri is the vector position of the i-th aperture in

the array.

Note that the error resulting from application of this pseudo-inverse to the unwrapped

measurement vector will be given by:

2πeσ = M+(2πe∗h) (3.27)

Note furthermore that the vector representing the solution error eσ has two parts: one

for the error in the Fourier phases (which we denote with the index K), and one for the

error in the atmosphere/piston (which we will denote with the index L), i.e.:

eσ = [eσ,K, eσ,L]
T (3.28)

We will focus attention on the latter, since it is of direct relevance for image formation.

Let us express the spatial frequencies measured by an array as two-element vectors of the

form (ωx, ωy). Let X be the d× 2 matrix containing these spatial frequencies. Note then that

the phase-wrap error will manifest itself merely as an image shift if and only if this error is

a (modulo-2π) phase ramp, i.e. there exists a 2-element shift vector z and an integer vector
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k which together satisfy:

2πeσ,K − 2πXz = 2πk (3.29)

Substituting from Equation (3.27) we obtain:

M+
K (2πe)− 2πXz = 2πk (3.30)

where M+
K denotes the sub-matrix of M+ formed by the rows associated with K.

Dividing through by 2π we obtain the equation: M+
K e∗h − Xz = k. Note that each

element of M+
K can be expressed as some rational number pi

qi
. Similarly we first assume

X contains rational spatial frequencies with greatest common denominator qx. Then we

can multiply through by the least-common-multiple (LCM) of the {qi} and qx to obtain a

system of equations whose coefficients are guaranteed to be integer (i.e., we have a linear

Diophantine system). Let this LCM be denoted as l. Then we have, after rearranging terms,

lXz = l(M+
K e∗h − k) (3.31)

We now wish to determine conditions under which there exist vectors k and z satisfying

this overdetermined Diophantine system. Applying the Smith Normal Form decomposition

(c.f. Theorem 3.5.2) to the matrix lX this time, and noting that rank(X) = 2, we have:

DX = UX(lX)VX (3.32)

where UX and VX are unimodular matrices of size d× d and 2× 2, respectively, and DX

is a rectangular diagonal matrix whose entries are zero below row 2.

If we left-multiply Equation (3.31) by UX on both sides, we obtain:

lUXXz = lUX(M+
K e∗h − k) (3.33)

Using Equation (3.32) and the fact that VX is a unimodular (and hence invertible) matrix,

we can then write:
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DXV−1
X z = l(UXM+

K e∗h −UXk) (3.34)

We are now in position to prove the main result of this section, which is preceded by the

following Lemma:

Lemma 3.7.2. Given wrap-invariance, the vector UXM+
K e∗h has integer entries below row 2.

Proof : (see Appendix B) �

Proposition 3.7.3. If a pattern is wrap-invariant (in the sense of Section 3.5), reconstruction error

induced by phase wrapping is limited to an image shift.

Proof : We re-arrange Equation (3.34) above so that it reads:

1
l

DXV−1
X z−UXM+

K e∗h = −UXk (3.35)

Let v = 1
l DXV−1

X z−UXM+
K e∗h. Note that since DX is zero below row 2, the entries of v

below row 2 will be equal to those of (−UXM+
K e∗h), which are integers by Lemma 3.7.2. Now

consider the first and second entries of v. Let f be the vector containing the fractional parts

of the first two elements of vector UXM+
K e∗h, and let A be the invertible matrix consisting

of the first two rows of 1
l DXV−1

X . Without loss of generality, choose z∗ = A−1f so that the

fractional part f is annihilated, leaving only integer elements in the first two entries of v.

Hence we now have:

v = −UXk (3.36)

with v ensured to contain only integer elements. Since UX is unimodular, the vector

k∗ = −U−1
X v will be integral. We have thus found a pair (z∗, k∗) with integer k∗ which

satisfies the Equation (3.34). Since Equation (3.34) is related to Equation (3.31) via a

unimodular (and hence invertible) mapping UX, invariance is hence proven. �

With the previous result, we have characterized the complete family of Phase Approach

solutions given in Equation (3.25). Namely we have shown that, for a wrap-invariant pattern,
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the family differs by at most an image shift from the true solution. Returning to our running

example in Figure 3.11, we verified that different solution choices from the family given in

Equation (3.25) simply resulted in shifts of an otherwise pristine image in the reconstruction.

On the other hand with wrap-variant pattern in Figure 3.2, image distortion of the severity

of Figure 3.3 was again observed, as expected.

3.7.2 Practical Phasor Approaches

Though traditional treatments employ the phase approach of the previous section which

operates on baseline phases, recent papers (e.g. Marthi and Chengalur (2014), Liu et al.

(2010)) have shown that approaches which operate at the phasor level can be superior

in accuracy. Liu et al. (2010) developed a Gauss-Newton-type Non-linear Least-Squares

(NLS) solver and showed it produced unbiased phase estimates, in contrast with the

biased ones provided by the phase approach. Marthi and Chengalur (2014) and Wijnholds

and Noorishad (2012) have also proposed low-complexity phasor-based approaches and

demonstrated performance near the Cramer-Rao Bound. Though the capacity of the Phasor

approaches to produce superior accuracy relative to Phase approach has been demonstrated,

the former’s convergence issues can be mitigated via initialization with the results of the

latter (see e.g. Liu et al. (2010), and Zheng et al. (2014)).

The implementations of the Phasor Approach typically employ the following measure-

ment model:

Vij = gig∗j fij + nij (3.37)

where Vij is the complex visibility observed between apertures i and j, gi = |gi|ejφi and

gj = |gj|ejφj are the complex gains of these apertures, fij is the true complex visibility

measured by this pair, and n is complex measurement noise. Note that the phase difference

between gi and gj is simply the optical path difference between apertures i and j introduced

in the previous section. Given this model, NLS approaches attempt to find a set of complex

phasors {gi} and { f } which minimize an objective function of the form:
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Λ = ∑
i

∑
j>i

wij||(Vij − gig∗j fij)(V∗ij − g∗i gj f ∗ij)|| (3.38)

Minimization of Λ with respect to the unknowns (i.e. distinct object and antenna

complex gains) can be accomplished with iterative application of the following updates,

as reported by Marthi and Chengalur (2014) in the context of radio interferometry, and by

Lacour et al. (2007) in the context of optical interferometry:

gk =
∑j 6=k wkjgj f ∗kjVkj

∑j 6=k wkj|gj|2| fkj|2
(3.39)

fb =
∑j>k g∗k gjVkj

∑j>k wkj|gk|2|gj|2
(3.40)

where the { fb} are the true complex visibilities of the distinct object phases in the array.

Due to the circularity of these definitions, these equations must be solved iteratively.

Starting from an initial guess for all phasors, Equation (3.39) is solved to obtain a better

estimate for the {gk} and then these {gk} are used to obtain refined estimates of the { fb}

through Equation (3.40). In the next iteration, these { fb} are used to further refine {gk}, and

so on.

Though there are other means of minimizing objectives of the form Λ (Wijnholds and

Noorishad, 2012) (Liu et al., 2010), we omit discussion of them here; our present purpose

is to characterize the correctness of the solutions themselves, regardless of how they are

obtained. As has been noted before (see e.g. Lannes and Anterrieu (1999)), there are strong

connections between phase- and phasor-based approaches. To see this, let z be the vector of

products {gig∗j f|i−j|} which minimize Λ. We rewrite Equation (3.38) as:

Λ = ∑
i

∑
j>i

wij||(Vij − zij)(V∗ij − z∗ij)|| (3.41)

Define rij = ej2πnij zij for an arbitrary integer nij and r as the vector containing the rij.

Note that r also minimizes Λ since the rotations {ej2πnij} do not change the values of

the residuals in Λ. Hence any set of rotated phasors {g̃i} and { f̃|i−j|} whose products
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produce the vector r will also minimize Λ. Note that the set of such valid phase vectors

(i.e. the concatenations of possible {∠g̃i} and {∠ f̃|i−j|}) includes the complete family of

Phase-approach solutions τσ in Section 3.7.1 with β̂∗K+L = ∠r (where ∠r is the vector of the

phases of the complex vector r). In other words, the valid phase component of the phasor

approach solutions is not unique, and the minimization of Λ admits the same solution

ambiguity depicted in Figure 3.6. Hence we see that integer ambiguities present in the

phase approach do not disappear in the phasor approach; in fact, the unwrapped candidate

solutions of the phase-based approach correspond to minima of the phasor-based objective.

In practice Phasor Approach techniques may converge to any one of these minima. Hence

the critical issue for reliable image reconstruction is again the nature of the difference

between these valid minima and the true solutions. Based on the connections we have

drawn with Phase-approach solutions above, the following Proposition is clear:

Proposition 3.7.4. If a pattern is wrap-invariant, the global minima of the Phasor-Approach objective

caused by the inherent 2π-periodicity in the objective’s residual differ from the true solution merely

by an image shift.

In practice we see that, as in the Phase approach, if the pattern is not wrap-invariant,

the Phasor Approach suffers from false global minima producing severe distortion in

the resulting reconstruction. The lower right panel of Figure 3.3 shows the resulting

reconstruction produced by the Phasor method using the updates in Equations (3.39) and

(3.40). To show the correspondence in solutions between two types of approaches, we

provided the result of the Phase approach as the initial point for the Phasor approach

as is common in practice (Liu et al., 2010), (Zheng et al., 2014). Indeed this point is a

global minimum of Λ which the updates above cannot escape, and as a result we observe

virtually-identical distortion to that of the Phase approach.

We repeated the experiment with the wrap-invariant pattern in Figure 3.11, and as

expected, the results were pristine in the noiseless case and virtually-identical to those of

the Phase approach in the noisy case. For completeness the results are given in Figure 3.13.

As expected, different initializations of the updates in Equations (3.39) and (3.40) simply
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Phasor Approach (Noiseless) Phasor Approach (SNR = 25 dB)

Figure 3.13: Reconstruction Results for Phasor Approach

resulted in shifts of an otherwise pristine image in the reconstruction.

3.8 Conclusions

In this chapter, we have examined the ambiguities caused by the 2π-periodicity of inter-

ferometric phase in Redundant Spacing Calibration. In particular we have described their

fundamental presence in existing RSC methods whether the observables considered are the

measured baseline phasors or their phases. In the former, e.g. by Greenaway (1990), they

are manifested as phase-wrapping errors, and in the latter, e.g. by Marthi and Chengalur

(2014), as false minima. We have demonstrated that in either case, these ambiguities can

result in noticeable distortion of the reconstructed image.

Using the Closest-Vector-Problem formulation of the unwrapping problem due to Lannes

and Anterrieu (1999), we have developed the notion of a wrap-invariant pattern. For wrap-

invariant patterns, the impact of the 2π-periodicity can be completely eliminated (c.f. Section

3.5) using well-known algorithms from lattice theory and the Smith Normal Form, and

reduced to a mere image shift (c.f. Section 3.7) when existing, fast approaches are used.

Phase-approach solutions (Arnot et al., 1985), (Greenaway, 1990), (Wieringa, 1992), (Lannes

and Anterrieu, 1999)) are commonly used to quickly obtain an initial point to aid in the
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convergence of the Phasor approach. They are obtained by selecting specific solutions

from the general family in Equation (3.25) via enforcement of additional constraints on

the solution. Phasor approaches seek those complex gains and object visibilities which

minimize a squared-residual with respect to the observed complex visibilities (Wijnholds

and Noorishad, 2012), (Liu et al., 2010), (Marthi and Chengalur, 2014) using, for example,

gradient-descent methods. We have seen that the same 2π-ambiguity which creates a family

of Phase-approach solutions also produces a corresponding family of global minima in the

Phasor approach. For either case, our results show that for wrap-invariant patterns, this

family represents merely shifted versions of the true image. We have also extended this

analysis to show that wrap-invariant patterns admit reliable imaging using standard, and

generalized, phase closures. Conversely we show that patterns which are not wrap-invariant

can suffer from distortion of the sort depicted in Figure 3.3.

The prognosis for mitigation of the ambiguity issues raised in this chapter is quite

positive. Random patterns appear to satisfy the wrap-invariance condition with high

probability. Moreover, failure to meet this condition amounts to the existence of a particular

kind of cycle in the interferometric graph which can be easily isolated; a chief contribution

of this chapter is a simple algorithm for identifying such cycles so that they can be removed

by the array designer. Finally, we have shown an example execution of the algorithm to

diagnose a member of a popular pattern which is not wrap-invariant. It is clear that with

careful array design, both Phase- and Phasor-based RSC techniques can reliably produce

quality image reconstructions free from discernible artifacts.
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Chapter 4

Robust image reconstruction with

redundant arrays and generalized

closure phases

4.1 Chapter Overview

Redundant Spacing Calibration (RSC) techniques employ redundancy in the baselines of a

telescope array to eliminate the contribution of atmospheric turbulence in the interferometric

observables. Whereas conventional techniques for this elimination require the enforcement

of prior constraints on the underlying image, RSC algorithms can be, in principle, mathemat-

ically well-posed and hence require no such prior knowledge. Traditionally these algorithms

have been applied directly to the fringe measurements. However, in scenarios of low pho-

ton flux, such as those arising in the observation of dim objects in space, single-exposure

fringe measurements are not reliable observables in general. Instead one must rely on

time-averaged, atmosphere-invariant quantities such as the bispectrum. In this chapter, we

develop a novel algorithm for redundant arrays which provides robust image reconstruction

using integrable atmosphere-invariant observables. Our algorithm utilizes standard linear

estimation methods, as well as techniques from lattice theory, to reliably estimate the Fourier
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phase. Moreover, we provide theoretical and empirical evidence that generalizing the classi-

cal bispectrum to higher-order atmosphere-invariant observables, which we call n-spectra,

can offer significant performance gains. Our selection of an independent and high-SNR set

of n-spectra leverages the notion of the minimum cycle basis from graph theory. We analyze

the expected shot-noise-limited performance of our algorithm for both pairwise and Fizeau

interferometric architectures, and corroborate this analysis with simulation results showing

performance near the Cramér-Rao bound. Lastly, we apply techniques from the field of

sparse recovery (SR) to perform image reconstruction from the estimated complex visibilities.

4.2 Problem Statement and Prior Work

Recall from previous Chapters that interferometric measurements take the form:

~β = ~θ + A~φ (4.1)

where A is an (N
2 )× N matrix whose rows compute the piston differences involved in each

measurement.

In Chapter 2 we introduced a class of algorithms which decouple the Fourier phases ~θ

from the atmosphere contributions ~φ by imposing prior constraints. With estimates for sparse

samples of the Fourier Transform, we showed that the residual ill-posed inverse problem

could be regularized effectively using techniques from sparse recovery. As interferometric

systems are tasked with the observation of increasingly-complex scenes, approaches which

minimize reliance on specialized prior assumptions are expected to gain appeal. In Chapter

3 we described the family of RSC techniques as an intrinsically well-posed alternative to

prior-regularized phase recovery is to use baseline redundancy to explicitly solve for piston

variation. We also examined the important issue of integer phase ambiguities in the context

of these techniques. Array design considerations based on the notion of wrap-invariance

(Kurien et al., 2016), as well as algorithms from lattice theory (Lannes and Anterrieu, 1999),

can be used to solve these ambiguity issues.
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In this chapter, we leverage elements from both Chapters 2 and 3 to develop a novel

algorithmic framework for low-flux imaging scenarios (as in, for example, observation of

dim objects in space). Here we must again rely on atmosphere-invariant observables like the

bispectrum and closure phase. Many approaches have been developed for estimation of the

Fourier phase from the closure phase relations. Several early papers on the subject (Rogstad,

1968),(Bartelt et al., 1984) proposed solving these equations recursively. Namely, two initial

Fourier phases θ̂A and θ̂B associated with two connected baselines A and B can be initialized

arbitrarily without loss of generality (see Section 3.5.1). The Fourier phase θ̂C of the residual

baseline C closing A and B can be determined as: θ̂C = β̂ABC − θ̂A − θ̂B, where β̂ABC is

the closure phase associated with triangle ABC. These initial phase estimates can then

bootstrap solution for the remaining phases using the appropriate closure relations involving

redundant copies of the baselines associated with these initial phases. While simple to

implement, such approaches are clearly sub-optimal in terms of estimation accuracy; the

fact that information about a given Fourier phase is contained in multiple closure phases

implies there is a benefit in joint inference of the Fourier phases from the complete set of

closure phases.

As we will quantify later in this Section, closure phases are corrupted with a variable

amount of measurement noise; closure phases involving short-baseline measurements will

typically incur less distortion due their high visibility (and hence high-SNR) relative to their

long-baseline counterparts. Reliable joint inference from the closure phases then entails

minimization of a weighted sum of closure or bispectrum residuals (i.e. weighted least-

squares methods). Such methods are of course complicated by wrapping issues analogous to

those described in Chapter 3. To address these, Haniff (1991) developed an algorithm which

respects the 2π-periodicity of the closure phase. This approach uses a conjugate-gradient

routine to find the set of Fourier phases {θ} which minimizes the following non-linear

objective:

Ψ1 =
Nc

∑
i=1

(
mod 2π{β̂i,cl − (θi1 + θi2 + θi3)}

wi

)2

(4.2)
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where Nc is the number of closures, β̂i,cl is the i-th closure phase, the θi1, θi2, and θi3 are the

Fourier phases associated with this closure, and wi is a weighting factor proportional to the

estimated variance of the closure measurement.

While this minimization has been shown to be successful in certain cases, it is prone to

stagnation at local minima due to the non-smoothness of the mod (x) function (Negrete-

Regagnon, 1996),(Thiébaut and Giovannelli, 2010). An alternative least-squares approach

suggested by Gorham et al. (1989) which instead works with the closure phasor (i.e. the

normalized bispectrum) has hence generally been preferred (Negrete-Regagnon, 1996). This

approach replaces the objective above with one taking the form:

Ψ2 =
Nc

∑
i=1

∥∥∥ejβ̂i,cl − ej(θi1+θi2+θi3)
∥∥∥2

wi
2 (4.3)

Objective Ψ2 is clearly a continuous function and hence local minima can be reliably found

with gradient-descent techniques. However the objective is non-convex in general, and hence

gradient-based techniques are not guaranteed to converge to the true global minimum.

To the best our knowledge, work by Lannes and Anterrieu (1999) was the first to

rigorously study the use of closure phases within the RSC framework. In this work, the

authors present a mixed, integer linear-least squares formulation of the phase estimation

problem in which the integer component pertains to the unknown (integer) phase wraps.

They first propose the use of techniques from lattice theory to resolve the wrap ambiguities.

They then develop a pseudo-inverse estimator which recovers the Fourier phases from

the measured baseline phases via an intermediate computation of the closure phases.

The computation of the necessary covariance matrices for optimal estimation within this

formulation is omitted. Since it is in fact the closure phases which are the direct observables

in practical low-flux scenarios, we present instead an approach working solely with the

closure phases and compute the necessary covariances in straightforward manner. Lannes

(2003) later proposed an alternate estimator based on computation of the Smith Normal Form

of the matrix mapping Fourier phases to closure phases. This estimator has the advantage

of completely eliminating the effect of phase wrapping in the closure measurements when
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appropriate routines from lattice theory are used to pre-process the phase measurements.

In contrast, our estimator reliably uses standard, fast linear estimation techniques, thereby

obviating computation of the Smith Normal Form at the possible expense of an extra shift

in the recovered image. Such image shifts are anticipated to be of negligible importance in

most cases of practical interest.

Though the bispectrum and associated closure phase have been standard interferometric

observables for decades, it is not difficult to imagine situations in which use of these

observables unnecessarily limits reconstruction performance. In Figure 4.1, we illustrate

this idea with an example. We label each baseline of an interferometric array with a

visibility, which is an indicator of the strength of its Fourier component relative to the

overall brightness of the image. In accordance with the power-law decay of intensity with

spatial-frequency modulus in an overwhelmingly-large fraction of natural images (see, e.g.

Ruderman (1994)), we consider a visibility distribution which drops sharply with baseline

length. In standard bi-spectral imaging, the high-spatial-frequency phase information

associated with long baseline b∗ is recovered via forming closures, for example, with a short

baseline along with another long baseline (Traditional). As we will see later in the chapter, for

a certain range of photon fluxes, the SNR of the bispectrum is approximately proportional

to the sum of the reciprocals of the squared visibilities of the associated baselines (Kulkarni

et al., 1991), i.e.:

SNR ≈ n̂

(
3

∑
i=1

1
γ2

i

)−1

(4.4)

where n̂ is the number of photoelectrons (pe) received per interference fringe per exposure

frame. As we will show in this chapter, this SNR model extends in the natural way to

the SNR of higher-order observables like that shown on the right (Generalized). In contrast

with the Traditional observable, Generalized observable utilizes only short (high-visibility)

baselines to close the long baseline, resulting in a near-doubling of the resulting SNR. We

will henceforth refer to the higher-order generalization of the bispectrum triple product as

the n-spectrum, and its phase as the generalized closure phase.
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Figure 4.1: Generalizing the phase closure concept . SNRs given assume each aperture contributes n̂ = 2e3
photoelectrons to each fringe in pairwise combination.

Generalization of the closure phase is not a novel concept in the astronomical community.

Recently Martinache (2010) proposed observables known as Kernel phases, which are obtained

by computing an orthogonal basis for the left-nullspace (e.g. using the Singular Value

Decomposition) of the matrix A in Equation (4.1) . The vectors of this basis are assembled

as the rows of a matrix K. When this matrix is applied to the measurements β, the

contributions due to the atmosphere (i.e. ~φ) clearly cancel, leaving only linear combinations

of the object phases in θ. These linear combinations can then be used to reconstruct the

Fourier phase via direct application of the pseudo-inverse of K (Martinache, 2014), or via

regularized inversion using prior image models (Ireland, 2013). These studies consider

masked-aperture or segmented-pupil scenarios in which either closure or Kernel phases

can be obtained directly via linear combinations of the raw phase measurements. Since

we consider the scenario encountered in long-baseline interferometry, in which accurate

raw phase measurements are not reliably obtained via multi-frame averaging, our inference

problem must be formulated in terms of integrated phasor observables, i.e. the n-spectra

defined above.
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Our approach is also conceptually similar to the approach of baseline bootstrapping

introduced in Chapter 3, Section 3.5.3. To see this, let us define the normalized optical

path difference (OPD) as the difference in the atmosphere phases between a given pair of

apertures. In the bootstrapping approach first proposed by Roddier (1988), temporal OPD

changes along a long, low-SNR baseline b are inferred by combining (or bootstrapping) those

measured on several short high-SNR baselines along a closed path involving b. In principle,

the phases on all baselines can then be de-rotated accordingly and the corresponding

phasors integrated coherently, thereby boosting the SNR on all baselines. This tracking

and de-rotation can be done real-time with fringe tracking or offline on processed data

(Buscher, 2015). As in bootstrapping, our approach seeks to build reliable proxy observables

for the phase estimates of the low-visibility baselines by forming closed paths involving

high-visibility baselines. However, bootstrapping eliminates differential phase relative to

a reference exposure frame and hence implicitly requires a threshold per-frame SNR on

the shortest baselines for robustness. In contrast, our approach has no such threshold as it

works directly with atmosphere-invariant observables.

In this chapter, we develop a comprehensive algorithmic framework for image recon-

struction based on RSC techniques and sparse recovery, and analyze its performance for

the two popular beam-combining architectures used in optical interferometry (pairwise, and

Fizeau). The chapter is organized as follows. In Section II, we derive an SNR model for the

n-spectrum, as well as for the covariance amongst distinct n-spectra. The analysis begins

with the pairwise case for simplicity, and mathematical arguments for an extension to the

Fizeau case are presented at the end of the section and in the Appendix. In Section III, we

describe a systematic, integer-least-squares approach for reconstructing imagery from object

visibilities and generalized closure phases (GC’s). We draw on the notion of a minimum

cycle basis to select a minimum set of linearly-independent GC’s (i.e. a basis) of minimum

variance which spans the subspace of all closures. Leveraging techniques first suggested by

Lannes and Anterrieu (1999) and the notion of wrap-invariant measurement mappings, we

apply algorithms from lattice theory to reliably unwrap the GC’s. We then quantify the gain
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in theoretical performance afforded by generalizing the classical third-order atmosphere-

invariant observables to higher-order cycles, and corroborate this theoretical performance

with simulation results. In this simulation, we apply our algorithm to reconstruct a dim,

structured object from generalized closures. For the final image reconstruction, we employ a

sparse recovery algorithm which enforces smoothness in the image domain by minimizing

a total variation metric.

4.3 Preliminaries

In this chapter we analyze the performance of generalized-closure-based imaging for both

the pairwise and Fizeau interferometric architectures (see Section 1.2) in terms of mean-

squared error (MSE) of the phase estimates. We begin with the pairwise architecture since

it is significantly easier to analyze. We then present a series of approximations which

accurately describe the algorithm’s performance in the Fizeau case while keeping the

tediousness of the mathematics at a manageable level. In both cases, the analysis is based

on the computation of the moments of the Poisson distribution; in the pairwise case, the

first two moments are required, whereas in the Fizeau case, the first o moments are needed,

where o is the order of the generalized closure.

4.3.1 Fringe Noise Model for Pairwise Beam Combiner

Given Nap apertures, recall that the Fourier phase and amplitude of the object is encoded in

a series of (Nap
2 ) interference fringes observed on a focal plane. In the pairwise case, each

fringe is measured on a separate set of detectors so that the Poisson shot noise incurred

is independent for each fringe. Suppose each aperture receives n photons and that this

light is split evenly (e.g. by beam-splitter) before being combined with the light from the

other apertures. Hence each aperture contributes n̂ = n
Nap−1 photons to each fringe. The

expectation of number of photons q at a given detector k for a given fringe is given by:
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〈q(k)〉 = 2n̂
Np

(1 + γcos(ωk + θ + φ)) (4.5)

where Np is the number of pixels over which these photons are spread, γ is the visibility of

the fringe (which takes it value between 0 and 1), ω is the fringe frequency, θ is the Fourier

phase, and φ is the atmosphere phase.

To retrieve the object phase and amplitude from its fringe encoding, we simply take the

Fourier transform and evaluate it at the fringe frequency:

z =
Np−1

∑
k=0

q(k)e−iωk (4.6)

The expectation of this quantity is given by:

〈z〉 = n̂γe−iβ f (4.7)

where β f is the phase of the fringe.

To obtain the bispectrum SNR, it will be useful to compute the power in the fringe, i.e.

expectation of the quantity zz∗:

〈zz∗〉 =
〈

Np−1

∑
k=0

Np−1

∑
k′=0

q(k)q(k′)e−iωkeiωk′
〉

(4.8)

This is equivalent to:

〈zz∗〉 =
Np−1

∑
k=0

Np−1

∑
k′=0
〈q(k)q(k′)〉e−iωkeiωk′ (4.9)

Using the first two moments of the Poisson distribution, we can write:

〈q(k)q(k′)〉 = 〈q(k)〉〈q(k′)〉+ δkk′〈q(k)〉 (4.10)

Substituting into Equation (4.9), we obtain:

〈zz∗〉 =
Np−1

∑
k=0
〈q(k)〉e−iωk

Np−1

∑
k′=0
〈q(k′)〉eiωk′ +

Np−1

∑
k=0
〈q(k)〉 (4.11)

Simplifying we obtain:

〈zz∗〉 = γ2n̂2 + 2n̂ (4.12)
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4.3.2 N-Spectrum Covariance and SNR Models for the Pairwise Architecture

Let us define a generalized N-spectrum G as the product of complex baseline measurements

along an o-edge cycle. Given variances σ2
Re(G) and σ2

Im(G) of real and imaginary components,

respectively, we define the pseudo-variance of the product as:

Vpairwise(G) := σ2
Re + σ2

Im = 〈GG∗〉 − 〈G〉〈G∗〉 (4.13)

or:

Vpairwise(G) =

[
o

∏
i=1
〈ziz∗i 〉

]
−

o

∏
i=1
〈zi〉〈z∗i 〉 (4.14)

Vpairwise(G) =

[
o

∏
i=1

(n̂2γ2
i + 2n̂)

]
− n̂2o

o

∏
i=1

γ2
i (4.15)

In the specific case of the classic triple product (i.e. the bispectrum), this expands to

(Kulkarni et al., 1991):

Vpairwise(G) = 2n̂5(γ2
1γ2

2 + γ2
2γ2

3 + γ2
3γ2

1) + 4n̂4(γ2
1 + γ2

2 + γ2
3) + 8n̂3 (4.16)

The SNR Spairwise :=
√

2|G|√
V(G)

is then given by:

Spairwise =
γ1γ2γ3n̂

3
2√

n̂2(γ2
1γ2

2 + γ2
2γ2

3 + γ2
3γ2

1) + 2n̂(γ2
1 + γ2

2 + γ2
3) + 4

(4.17)

To gain insight into the limiting behavior of the SNR, we make two approximations:

A low-SNR approximation can be found by considering only the constant term in the

denominator, which will dominate when n̂ and/or the γi are small.

Spairwise,low ≈
γ1γ2γ3n̂

3
2

2
(4.18)

A high-SNR approximation can be found by considering the highest-order term in the

denominator, which will dominate when n̂ is large and/or the γi are large.

Spairwise,high ≈
γ1γ2γ3n̂

3
2√

n̂2(γ2
1γ2

2 + γ2
2γ2

3 + γ2
3γ2

1)
(4.19)
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By averaging the fringe phasors over a sufficient number of frames N f , we can build

the SNR to a level at which the bispectrum phase (i.e. the closure) phase can be measured.

For phasor SNRs sufficiently greater than 1, we can apply the following well-known

approximation for the variance on the corresponding phase θcl (see e.g. Walkup and

Goodman (1973)):

σ2
θcl
≈ 1

N f S2 (4.20)

We then obtain the following approximations for the closure phase variances. At low

SNR, we have:

σ2
θcl ,low ≈

4
N f γ2

1γ2
2γ2

3n̂3
(4.21)

Taking the logarithm we find that the variance decouples:

log σ2
θcl ,low ≈ −2 log γ1 − 2 log γ2 − 2 log γ3 − 3 log n̂ + C (4.22)

where C is a constant independent of the flux level n̂ and the visibilities γi.

At high SNR, we have:

σ2
θcl ,high ≈

1
n̂N f

(
1

γ2
1
+

1
γ2

2
+

1
γ2

3
) (4.23)

Generalizing the results above to n-spectra, we obtain for low SNR,

σ2
θcl ,low ≈

2o

N f n̂o ∏o
i=1 γ2

i
(4.24)

and for high SNR,

σ2
θcl ,high ≈

1
n̂N f

o

∑
i=1

1
γ2

i
(4.25)

where o is the order of the generalized closure. Note that if we take the logarithm of

Equation (4.26), we obtain:

log σ2
θcl ,low ≈ o log

2
n̂
− 2

o

∑
i=1

log γi − log N f (4.26)
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4.3.3 Covariance Matrix of the Generalized Closure Phases for the Pairwise

Architecture

In this section we generalize results of Kulkarni et al. (1991) to obtain expressions for

the n-spectra covariance matrices. We will first compute the covariance between two n-

spectrum phasors G1 = Re[G1] + jIm[G1], with E[G1] = g1, and G2 = Re[G2] + jIm[G2],

and E[G2] = g2. Let I and J denote the set of baselines in n-spectra G1 and G2, respectively.

Then we have:

σ(G1, G∗2 ) =

〈
∏
i∈I

zi ∏
j∈J

z∗j

〉
−∏

i∈I
〈zi〉∏

j∈J
〈z∗j 〉 (4.27)

We can then factor out the factors common to G1 and G2 from those which are distinct

to obtain:

σ(G1, G∗2 ) =

[
∏

k∈I∩J
〈zkz∗k 〉 − ∏

k∈I∩J
〈zk〉〈z∗k 〉

]
∏

l∈I\J
〈zl〉 ∏

m∈J\I
〈z∗m〉 (4.28)

Making the appropriate substitutions from Equation (4.12), we obtain:

σ(G1, G∗2 ) = e2π j(∠G1−∠G2)

[
∏

k∈I∩J
(n̂2γ2

k + 2n̂δz1,k ,z2,k)− ∏
k∈I∩J

n̂2γ2
k

]

× ∏
l∈I\J

n̂γl ∏
m∈J\I

n̂γm (4.29)

where δz1,k ,z2,k = 1 if the common measurements are the same, and zero if they are conjugates

of each other. Similarly,

σ(G1, G2) = e2π j(∠G1+∠G2)

[
∏

k∈I∩J
(n̂2γ2

k + 2n̂δ̄z1,k ,z2,k)− ∏
k∈I∩J

n̂2γ2
k

]

× ∏
l∈I\J

n̂γl ∏
m∈J\I

n̂γm (4.30)

where δ̄z1,k ,z2,k = 1 if the common measurements are conjugates of each other, and zero if
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they are the same.

We can now compute real and imaginary n-spectra covariance as:

σ(Re[G1], Re[G2]) =
1
2

Re[Cov(G1, G∗2 ) + Cov(G1, G2)] (4.31)

σ(Im[G1], Re[G2]) =
1
2

Im[Cov(G1, G∗2 ) + Cov(G1, G2)] (4.32)

σ(Re[G1], Im[G2]) =
1
2

Im[−Cov(G1, G∗2 ) + Cov(G1, G2)] (4.33)

σ(Re[G1], Im[G2]) =
1
2

Re[−Cov(G1, G∗2 )− Cov(G1, G2)] (4.34)

Given the n-spectra covariance expression above, we can now approximate the covariance

between two generalized closure phases using Taylor series approximation of the moments,

which is a technique known as the delta method (see, e.g. Casella and Berger (2002)). First we

define the angle function of a phasor as θ(x, y) = arctan y
x . The corresponding generalized

closure phases are given by: Θ1 = θ(Im[G1], Re[G1]) and Θ2 = θ(Im[G2], Re[G2]). Applying

the delta method yields the following approximation:

σ(Θ1, Θ2) ≈
(

∂θ

∂x

∣∣∣
g1

)(
∂θ

∂y

∣∣∣
g2

)
σ(Re[G1], Im[G2]) (4.35)

+

(
∂θ

∂y

∣∣∣
g1

)(
∂θ

∂x

∣∣∣
g2

)
σ(Im[G1], Re[G2]) (4.36)

+

(
∂θ

∂y

∣∣∣
g1

)(
∂θ

∂y

∣∣∣
g2

)
σ(Im[G1], Im[G2]) (4.37)

+

(
∂θ

∂x

∣∣∣
g1

)(
∂θ

∂x

∣∣∣
g2

)
σ(Re[G1], Re[G2]) (4.38)

Evaluation of the derivatives in the expression above yields:
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σ(Θ1, Θ2) ≈ (
−Im[g1]

Re[g1]2 + Im[g1]2

)(
Re[g2]

Re[g2]2 + Im[g2]2

)
σ(Re[G1], Im[G2])

+

(
Re[g1]

Re[g1]2 + Im[g1]2

)(
−Im[g2]

Re[g2]2 + Im[g2]2

)
σ(Im[G1], Re[G2])

+

(
Re[g1]

Re[g1]2 + Im[g1]2

)(
Re[g2]

Re[g2]2 + Im[g2]2

)
σ(Im[G1], Im[G2])

+

(
−Im[g1]

Re[g1]2 + Im[g1]2

)(
−Im[g2]

Re[g2]2 + Im[g2]2

)
σ(Re[G1], Re[G2]) (4.39)

4.3.4 Covariance Matrix Approximations for the Fizeau Architecture

In the Fizeau case, Equation (4.12) becomes:

〈zz∗〉 = γ2n2 + Napn (4.40)

As shown in Appendix C.1, we can approximate the variance of a n-spectrum of order o

as:

VFizeau(G) ≈
[

o

∏
i=1

(n2γ2
i + Napn)

]
− n2o

o

∏
i=1

γ2
i (4.41)

Hence the SNR can be approximated as:

SFizeau ≈
√

2n
o
2 ∏o

i=1 γi√[
∏o

i=1 (n2γ2
i + Napn)

]
− n2o ∏o

i=1 γ2
i

(4.42)

Applying the same approximations in Appendix C.1 to the covariance yields the follow-

ing analogues to Equations (4.29)-(4.30)

σ(G1, G∗2 ) = e2π j(∠G1−∠G2)

×
[

∏
k∈I∩J

(n2γ2
k + Napnδz1,k ,z2,k)− ∏

k∈I∩J
n2γ2

k

]
∏

l∈I\J
nγl ∏

m∈J\I
nγm (4.43)
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and,

σ(G1, G2) = e2π j(∠G1+∠G2)

×
[

∏
k∈I∩J

(n2γ2
k + Napnδ̄z1,k ,z2,k)− ∏

k∈I∩J
n2γ2

k

]
× ∏

l∈I\J
nγl ∏

m∈J\I
nγm (4.44)

4.4 Fourier Phase Recovery using the N-Spectra

In this section, we briefly review the integer least-squares approach for RSC phase recovery

(see e.g. Lannes and Anterrieu (1999), Kurien et al. (2016) for more comprehensive treat-

ments), and then describe an algorithm for selection of a set of generalized closure relations

of minimum total variance.

4.4.1 RSC Phase Recovery with Wrap-Invariant Closure Mappings

We begin by recalling the fundamental RSC equation from Chapter 3:

M

 ~θ

~φ

 = β + 2πe (4.45)

In this Section we discuss generalized closure relations which eliminate the ~φ contribution

in the model in Equation (4.45). We first recall from Chapter 3 (see Definition 3.5.1) that

following the analysis of Lannes and Anterrieu (1999), the range of the matrix M can be

divided into two subspaces: (1) the subspace K spanned by the d columns associated with

the Fourier phases, or equivalently the range of the sub-matrix Mθ formed by these columns,

and (2) the piston, or aberration, phase space L is the span of the Nap columns associated

with the piston phases, or equivalently the range of the sub-matrix Mφ formed by these

columns. Note that the d columns spanning K are linearly-independent by virtue of having

non-zero entries in mutually disjoint sets of baseline indices. Hence dim(K) = d. The

subspace L has dimension Nap − 1 (Lannes and Anterrieu, 1999); the constant vector forms

the one-dimensional nullspace of Mφ.
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Additionally, let us establish the following Definitions:

Definition 4.4.1. (Interferometric graph): The interferometric graph of an array is the

directed graph whose vertices are the Nap apertures in the array and edges are the (Nap
2 )

baselines connecting all vertex pairs.

Definition 4.4.2. (Cycle-space of a directed graph) (Liebchen and Rizzi, 2005): Given a

directed graph G with a set of vertices V and edges E, the cycle space of the graph is

the vector space of Q|E| spanned by the incidence vectors of cycles with a (clockwise, or

counter-clockwise) orientation. It can be shown that the dimension of the cycle space is

M + N − 1, where M = |E| and N = |V|.

Suppose we have a basis for the cycle-space of the interferometric graph. Let us stack the

elements of this basis as row vectors in a (Nap−1
2 )× (Nap

2 ) matrix Cmc, which maps baseline

phase measurements to generalized closure phases. Recall that closure relations eliminate

piston differences in the measurements so that Cmc annihilates the subspace L, i.e. the space

spanned by the columns of M corresponding to ~φ.

In Figure 4.2, we show a simple four-aperture interferometric graph and one possible

cycle basis for the graph. For this particular example, we can write:

Cmc =


1 1 1 0 0 0

0 0 −1 1 1 0

1 0 0 0 1 1

 (4.46)

where the column (i.e. baseline) indexing in the matrix follows the labeling in the Figure.

Note that the final triangle cycle (i.e. the one containing baselines 2, 4, and 6, and represented

by the row vector w∗ := (0, 1, 0, 1, 0,−1)), can be represented as a linear combination of the

cycles in the basis: w∗ = c1 + c2 − c3, where {ci} are the rows of Cmc

While for purposes of simplicity we have chosen a cycle basis consisting exclusively of

three-baseline cycles, in general the elements of a cycle basis can contain any number of

edges.

Lemma 4.4.1. The nullspace of Cmc is L.
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Figure 4.2: One possible cycle-basis for a simple interferometric graph. Note the fourth triangle (i.e. baseline
set {2, 4, 6}) can be expressed as a linear combination of the cycles shown.

Proof : Clearly the Nap columns of L are in the nullspace of Cmc from the arguments above.

To see that these columns span the nullspace, note that from the well-known Rank-nullity

theorem from linear algebra (see, e.g. Bretscher (2001)), we have:

dim(ker(Cmc)) =

(
Nap

2

)
−
(

Nap − 1
2

)
= Nap − 1 (4.47)

Hence dim(ker(Cmc)) = dim(L). �

We can now form closure relations as:

CmcM

 ~θ

~φ

 =

[
Coc 0

]  ~θ

~φ

 (4.48)

where Coc := CmcMθ , and is the mapping between object phases and closure phases.

Proposition 4.4.2. Let ∆rx and ∆ry denote the vectors containing the x- and y-coordinates of the

baselines in an array, respectively. If the array is a valid RSC array, these columns form a basis for

the two-dimensional nullspace of Coc.

Corollary 4.4.3. For a valid RSC array, the mapping Coc is injective up to an image shift.

Proofs of Proposition 4.4.2 and Corollary 4.4.3 are given in Appendix C.2. �

Let us define ycl as the observation vector of wrapped generalized closure phases, and

2πecl the wrapping vector (with integer ecl). Our phase measurement model is then given

by:
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Coc~θ = ye + n (4.49)

where ye = ycl + 2πecl , and n is the measurement noise, which we shall assume in this

chapter is predominantly due to shot noise on the focal plane.

Given that the generalized-closure mapping is injective up to an image shift, we can

now formulate the well-posed recovery of the Fourier phases as the following generalized,

integer least-squares problem, which finds a vector in the range of the closure matrix at a

minimum Mahalanobis distance from the actual, wrapped measurement vector:

θ̂RSC = argminecl ,~θ

(
ye − Coc~θ

)T
Σ̂−1

(
ye − Coc~θ

)
(4.50)

where Σ̂ is an estimator of the covariance matrix of the phase measurements. This estimator

can be obtained by substituting estimates for the object visibilities {γi} into the covariance

expressions in the previous section. It is acknowledged that this least-squares solution is

neither the optimal nor maximum-likelihood solution to the phase inference problem. For

one, a Gaussian distribution on the closure phases is implicitly assumed to hold, and can

only approximately hold for high-SNR closure phases. It is therefore assumed that n-spectra

will be integrated for a sufficiently large number of frames for this approximation to be

reliable for most, if not all, of the closure phases.

Assuming the covariance matrix estimator is not degenerate, it will admit a Cholesky-

decomposition Σ = BBT. Equation (4.50) is then equivalent to searching for vectors e which

minimize the projection of a whitened measurement B−1ye onto the subspace defined by

ker((B−1Coc)T). Specifically we seek to minimize:

f (e) = ||PΣB−1(ycl + 2πecl)||
2

(4.51)

where PΣ is a matrix representing the orthogonal projection from Rn onto ker((B−1Coc)T).

Letting e′cl = −ecl , we can rewrite the above objective function as:

f (e′) = ||PΣB−1(ycl − 2πe′cl)||
2
= ||PΣB−1ycl − 2πPΣB−1e′cl ||

2
(4.52)
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This optimization problem is equivalent to the so-called closest vector problem (CVP) in

the theory of lattices. The connection of interferometric phase-unwrapping with the CVP

problem was, to the best of our knowledge, first explored in Lannes and Anterrieu (1999). In

this paper, the authors formulate an analogous minimization problem for the raw baseline

measurements.

We will define a lattice L(Zn) as the set of points generated by integer combinations

of the column vectors of a matrix L. Letting P̃ = PΣB−1, our optimization problem then

amounts to the following: Find the lattice point in P̃(Zn) which is closest to P̃ycl/(2π). A

compact representation of the lattice Γ is given by:

Γ =

{
m≤n−(d+N−3)

∑
i=1

aivi | ∀ai ∈ Z

}
(4.53)

where {vi} are linearly-independent and together form a basis of the lattice. Given the

lattice basis, several algorithms exist for finding the closest lattice point to a specified vector.

A popular class of algorithms, known as the Sphere-Decoding algorithms, are efficient

searches for the closest lattice point within a hypersphere of a certain radius centered on the

input vector (see e.g. Agrell et al. (2002)). For the simulations in this chapter, we instead use

the lower-complexity Babai Nearest Plane (Babai-NP) algorithm (Babai, 1986). For lattice

bases which are nearly orthogonal (such as those we use for our simulations), this algorithm

offers reliable, albeit not guaranteed, performance in practice.

Suppose we have found a basis for the lattice P̃(Zn), and we have solved the Closest

Vector Problem for a given closure vector ycl . Let b∗ be the output of the Babai Nearest

Plane Algorithm - i.e. it is the lattice point which is the closest to ycl .1 We now seek to solve

for the wrap vector corresponding to this lattice point, i.e. we seek a solution to:

b∗ = P̃ê (4.54)

1It is well-known that the performance of the Babai algorithm and other CVP algorithms is improved when
the lattice basis is reduced as mentioned in Section 3.3.1. We used the LLL algorithm implementation due to
Zhou (2014) in our simulations.
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Note that P̃ is a projection matrix and thus not full-rank, and therefore there will be

infinitely-many solutions to this equation. Indeed, by analogy to the integer wrap vectors

in Chapter 3 (which were correct only up to an integer vector in the range of M), our

solution y∗cl is correct only to within an integer vector eresid in the range of Coc. Hence there

is a fundamental ambiguity that needs to be addressed. Once the measurement vector is

unwrapped, there are various ways to solve the RSC system which respect the presence of a

residual ambiguity eresid described above. Following standard least-squares principles, we

first compute via projection the vector y∗cl,im(C) in im(Coc) closest (in Mahalanobis distance)

to the unwrapped measurement vector, i.e.

y∗cl,im(C) = B−1(I− PΣ)By∗cl (4.55)

Per the first method (Lannes, 2003), we can compute the Smith Normal Form (SNF) (see

Theorems 3.5.2 and 3.5.3) {U, D, V} of our matrix Coc, and set UC = U−1, DC = D, and

VC = V−1. We then can write:

Coc = UCDCVC (4.56)

A valid RSC solution can then be obtained by evaluating:

θ̂RSC = V−1
C D+

C U−1
C y∗cl,im(C) (4.57)

where D+
C denotes the pseudo-inverse of DC.

The effect of the residual ambiguity vector eresid on this solution requires careful consid-

eration. Note that the resulting wrap-induced error in this solution is given by:

2πeRSC = 2πV−1
C D+

C U−1
C eresid (4.58)

Since the matrices UC and VC are unimodular, they are invertible over the integers. If all

the elementary divisors in DC are equal to 1, then D+
C will also be integral, and hence eRSC

will be integral. This in turn guarantees that the final error in the Fourier phase will be 0
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mod 2π, i.e. that the RSC solution θ̂RSC is wrap-invariant.

Definition 4.4.3. A wrap-invariant closure mapping Coc is one whose elementary divisors

of the matrix Coc are all 1.

Proposition 4.4.4. (Sufficient condition for wrap-invariant closure imaging): Given a wrap-

invariant closure mapping Coc, the RSC phase solutions derived from the associated (generalized)

closure phases will be immune to the effects of phase-wrapping.

Recall that in Chapter 3, we observed that this condition can be violated by RSC patterns

which are not wrap-invariant. Conversely, we have observed that with wrap-invariant

patterns, the closure mappings associated with the cycle bases that we will consider in

this paper (i.e. fundamental cycle bases and minimum cycle bases) are also typically

wrap-invariant in practice.

As it turns out, given a wrap-invariant closure mapping, the inverse problem in Equation

(4.49) can be solved reliably even without the Smith Normal Form; it is sufficient to find any

unimodular r-by-r sub-matrix C̃ of Coc and solve the associated smaller system in Equation

(4.59) to obtain a valid solution. Recall that for valid RSC arrays Coc will have r + 2 columns

and hence in this approach, two (non-collinear) object phases are implicitly set to zero. This

implicit selection then fixes the fundamentally-ambiguous translation of the scene discussed

at the beginning of the section.

θ̃ = C̃−1y∗cl,im(C) (4.59)

Since C̃ is unimodular, C̃−1 will have solely integral entries so that the resulting wrap

error C̃−1eresid = 0 mod 2π. Assuming the measured phase has been correctly unwrapped,

the solution in Equation (4.59) amounts to a so-called basic solution of our generalized

least-squares problem. We then have the following expression for the error covariance

matrix for the estimator θ̂RSC (Kay, 1993).

Σbasic = (C̃TΣ−1C̃)−1 (4.60)
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The basic solutions belong to the countably-infinite set of solutions to Equation (4.49). It

turns out, somewhat surprisingly, that any particular solution within this set can be reliably

limited to a mere image shift for patterns that are wrap-invariant. The complete set is given

by:

θσ = C+
ocy∗cl,im(C) + θ0 (4.61)

where θ0 is any vector in the nullspace of Coc, and C+
oc denotes the pseudo-inverse of Coc.

The pseudo-inverse can be computed using the Singular-Value-Decomposition (SVD) of Coc,

which is given by:

Coc = UσΣσVσ (4.62)

where Uσ and Vσ are (Nap−1
2 )× (Nap−1

2 ) and d× d orthogonal matrices, respectively. Σσ is a

(Nap−1
2 )× d diagonal matrix with r non-zero diagonal entries (the so-called singular values of

Coc ), where r = rank(Coc) = d− 2.

The Moore-Penrose pseudo-inverse is then given by (Bretscher, 2001):

C+
oc = UσΣ+

σ VT
σ (4.63)

where Σ+
σ is a diagonal matrix whose r non-zero diagonal entries are the reciprocals of the

corresponding non-zero entries in Σσ.

In Chapter 3, we showed that the effect of wrapping on the RSC pseudo-inverse solution

to Equation (4.45) can be reliably limited to an image shift for wrap-invariant patterns. An

analogous result and proof apply to closure-based RSC imaging:

Proposition 4.4.5. For wrap-invariant closure mappings, the error induced by wrapping of the

(generalized) closure phases can be limited to an image shift using the standard Moore-Penrose

pseudo-inverse estimator.

Proof: See Appendix C.3 �

We can leverage this result to establish an analogous result pertaining to the well-known
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non-linear least-squares formulation due to Gorham et al. (1989) discussed in Section 4.2.

Namely we have the following Corollary:

Corollary 4.4.6. Given a wrap-invariant closure mapping, the set of solutions minimizing Objective

Ψ2 in Equation 4.3 differ from the true solution by an image shift in the noiseless case.

Proof: For Objective Ψ2 to be zero, clearly each term (i.e. each squared-residual) in the

summation must be zero. Hence we must have ejβ̂i,cl = ej(θi1+θi2+θi3) | ∀i. These constraints

are clearly equivalent to the linear phase constraints solved by the family of solutions in

Equation (4.61). Hence the solution sets are the same in the noiseless case. �

The error covariance of elements in the pseudo-inverse solution can be expressed as

(Montgomery et al., 2006):

Σpinv = V̂T
σ Σ2

+V̂σ (4.64)

where V̂σ is obtained by omitting the final 2 columns of Vσ which form a basis for the

nullspace of Coc.

4.4.2 Selection of the N-Spectra

In this section, we describe a strategy for obtaining a near-optimal linearly-independent set

of generalized closure phases. This strategy is founded on the notion of minimum cycle basis

from graph theory.

Definition 4.4.4. (Minimum cycle basis of a directed graph): Let each edge of the graph be

assigned a positive weight ck, and the weight of a cycle be defined as the sum of the weights

of its constituent cycles.

With these Definitions, we can then ask for the set of linearly-independent oriented

cycles which spans the cycle space and has minimum total weight. We call such a set the

minimum cycle basis of a directed graph G.

We next state a fundamental lemma that establishes a practical method for obtaining a

minimum cycle basis, for which the proof can be found in many textbooks on graph theory
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(see e.g. Gross and Yellen (2006)).

Lemma 4.4.7. (Optimality of the Greedy Algorithm): Consider a vector space V, a set of vectors

which span V, and a corresponding set of weights for each of these vectors. A basis of minimum total

weight can be found by first sorting the vectors in decreasing order of weight, and then selecting

vectors for the basis in this order if and only if they are linearly-independent of previous selections.

This is known as the greedy algorithm.

From Lemma 4.4.7, we can find a set of linearly-independent closure relations of minimum

total variance by employing the greedy algorithm on the set S of all possible closure relations.

However, this set is equivalent to the set of all possible cyclic permutations, which becomes

enormous for arrays of large size. Fortunately, in an extension of a result due to Horton

(1987) for undirected graphs, Liebchen and Rizzi (2005) showed that the elements of the

minimum cycle basis of a directed graph could be found among a special (and much smaller)

subset of S known as the Horton cycles. We describe these cycles through the following

definitions:

Definition 4.4.5. (Shortest path tree): The shortest path tree of a graph G with respect to a

node A is the spanning tree which connects node A to each other node in G via a path of

minimum weight.

Figure 4.3 gives a simple example of a shortest path tree for an interferometric graph in

which the top-most node is the root. The construction of shortest path trees is a well-studied

problem in graph theory (see e.g. Gross and Yellen (2006)) which is typically solved using a

shortest-path routine such as Dijkstra’s Algorithm (Dijkstra, 1959).

Definition 4.4.6. (Horton cycle): Given the shortest path tree T originating from an arbitrary

node A, a Horton cycle is a cycle formed by connecting the endpoints of any two branches

of T.

Lemma 4.4.8. (Minimum-cycle-basis elements are Horton cycles): All elements of the minimum-

cycle-basis are Horton cycles. Therefore in searching for the minimum-cycle-basis, it suffices to search
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Figure 4.3: A shortest path tree

the Horton cycles. Proof: We summarize the Proof due to Liebchen and Rizzi (2005) in Appendix

C.4. �

To exploit the Lemma above, we seek a decomposition of the weight of a cycle into the

weights of its constituent edges (i.e. baselines). As the following Propositions show, at

the extreme low- and high-SNR limits, the n-spectrum variance does indeed allow such a

decoupling.

Proposition 4.4.9. (Low-SNR Decoupling Approximation): In the low-SNR limit, the logarithm

of the total variance of any cycle is given (up to a global additive constant) by the sum of the costs

assigned to each baseline in the cycle, where the cost of a baseline k with visibility γk is given by:

ck = log 2
n − 2 log γk.

Proof: This can be seen by re-writing the low-SNR approximation in Equation (4.26) as:

log σ2
θcl ,low ≈

o

∑
i=1

log
2
n̂
− 2 log γi + C (4.65)

where C = log N f is a constant with respect to both visibility and flux and therefore

irrelevant for the purposes of closure selection. �

Proposition 4.4.10. (High-SNR Decoupling Approximation): In the high-SNR limit, the total

variance of any cycle is given (up to a global scaling factor) by the sum of the costs assigned to each

baseline in the cycle, where the cost of a baseline i with visibility γi is given by: ci =
1

γ2
i
.

Proof: This follows directly from the high-SNR approximation in Equation (4.25). �
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Based on the Propositions above, we now have a way to construct a set of linearly-

independent generalized closures of minimum variance at the low- and high- SNR extremes.

As demonstrated in the next section, even at moderate flux-levels where these approxi-

mations lack precision, this closure selection method can yield significant improvements

over traditional closure imaging restricted to baseline triangles. To estimate the scaling of

the computational cost of the method, recall that the greedy algorithm is run on the set of

Horton cycles. Since there are Nap shortest-path trees, each rooted at a distinct aperture, and

m− (Nap − 1) cycles in each of these trees, the total number of Horton cycles is O(mNap).

Since m = O(N2
ap), we see that the algorithm is O(N3

ap), which is the same complexity as if

the greedy algorithm were run on an exhaustive listing of all (Nap
3 ) three-baseline closures.

4.5 A Practical Algorithm for RSC Closure Imaging

In this section we synthesize the techniques developed in previous sections into an algorithm

for RSC imaging using generalized closures. Recall that closure selection relies on estimates

of the baseline visibilities {γi}. These estimates can be derived for the pairwise case by

solving Equation (4.12) for γ to yield:

γi =

√
〈zz∗〉 − 2n̂

n̂
(4.66)

Similarly, for the Fizeau case, we can solve Equation (4.40) to obtain:

γi =

√
〈zz∗〉 − Napn

n
(4.67)

Having estimated both Fourier phases and visibilities, we can form estimates for the

complex visibilities v̂ of the object. To estimate the image coefficients x̂ from these complex

visibilities, we must apply a deconvolution algorithm. For this purpose we have chosen the

standard sparse-recovery regularization known as Total Variation Minimization (TV-Min),

whose success in reconstructing piecewise smooth objects is well-known(Becker et al., 2011).

The TV-Min regularization is given by:

96



x̂ = arg minα ‖α‖TV subject to: ‖Fα− v̂‖2 ≤ ε (4.68)

where F is a partial Fourier matrix whose rows are vectorized representations of the 2D

sinusoids associated with the array’s measured spatial frequencies.

Algorithm 3 provides the complete set of steps we have discussed.

Algorithm 3 RSC Image Reconstruction Algorithm

1. Estimate Visibilities γi (c.f. Equations (4.66)-(4.67))
2 Select N-Spectra Relations via Minimum Cycle Basis
2.1 choose decoupling approximation according to SNR regime (c.f. Proposition 4.4.9 or
4.4.10)
2.2 assign baseline edge weights accordingly
2.3 enumerate the Horton cycles of the interferometric graph
2.4 execute greedy algorithm on set of Horton cycles to find minimum-variance set of
m− (Nap − 1) n-spectra
3. Average the Selected N-Spectra
4. Unwrap the generalized closure phases corresponding to these N-Spectra (c.f. Sec-
tion 4.4.1)
5. Solve generalized least-squares problem with unwrapped generalized closures
6. De-convolve the estimated complex visibilities to produce image reconstruction
using the regularization in Equation (4.68) or other regularization technique

We used the software package known as NESTA (Becker et al., 2011) to execute regular-

ization in Equation (4.68).

4.6 Algorithm Performance

In this Section, we present the results of application of Algorithm 3 to a simulated scenario

of imaging a structured object space.

4.6.1 Sensitivity Limits

A useful benchmark for our results is provided by the Cramér-Rao Lower Bound (CRLB)

for interferometric phase estimation in the absence of atmospheric turbulence. We begin by

defining our fringe measurement model in the standard way:
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p = Ã

 xcv

ycv

+
nNap

N2
f p

1T
N2

f p
(4.69)

where p is the vector of pixel counts, xcv, and ycv are the (Nap
2 ) real and imaginary components

of the complex-visibility components, respectively, Ã is the matrix mapping the real and

imaginary parts of the complex visibilities to pixels on the focal plane (often called the

visibility-to-pixel matrix V2PM in the literature), and 1T
N2

f p
is the all-ones vector of length

N2
f p. Recall that in Section 1.4 we formed this mapping as a matrix A, whose rows were

the sinusoidal functions associated with each fringe generated by the beam combiner. A

comparison between the definitions of the two mappings yields the following relation:

Ã =
2n
N2

f p
APA (4.70)

where PA performs a permutation of the columns of A to respect the ordering of the

quadrature components xcv, and ycv in Equation (4.69).

Leveraging the analysis in Chapter 1 (see Section 1.4) 2, we can compute the Fisher-

Information Matrix (FIM) for complex-visibility estimation with a Fizeau beam-combiner

as:

Ixcv,ycv =
(

ÃTΛ−1
f p Ã

)
(4.71)

where Λ f p is a diagonal matrix whose diagonal entries are the expected values of the photon

counts at each detector in the array.

The CRLB for the covariance of these vector parameters is then given by:

Cxcv,ycv − I−1
xcv,ycv

≥ 0 (4.72)

where the notation ≥ in this context means that the matrix difference on the left-hand side

is positive-semidefinite.

2The interested reader is directed to Zmuidzinas (2003) for the original derivation
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The above bound applies to single-frame fringe phasor estimation for a non-redundant

array. Since we are instead evaluating phase estimation schemes for a redundant array

given multiple frames of data, we must incorporate these transformations into the bound

(Kay, 1993). Namely, for a redundant array, the parameter vector must be shortened to the

d distinct complex-visibility phasors xcv,d + (1j)ycv,d. Let us define the vector zcv,d as the

concatenation of xcv,d and ycv,d. The fringe model is then given by: p = ÃRzcv,d +
nNap

N2
f p

1T
N f p

,

where R is a 2(Nap
2 )× 2d matrix mapping the real and imaginary parts of the distinct complex

visibilities to those of the 2(Nap
2 ) generated fringes. The FIM then becomes:

Izcv,d =
(

RTÃTΛ−1
f p ÃR

)
(4.73)

Defining the function gθ = arctan ycv,d
xcv,d

, the CRLB for the phase covariance matrix Σθ can

be expressed as:

Σθ −
1

N f rames

∂gθ(zcv,d)

∂zcv,d
I−1

zcv,d

∂gθ(zcv,d)
T

∂zcv,d
≥ 0 (4.74)

where ∂gθ(zcv,d)
∂zcv,d

is the Jacobian matrix of the distinct Fourier phases with respect to the

distinct complex-visibility phasors.

Since the left-hand-side of Inequality (4.74) is positive semi-definite (PSD), and the

diagonal entries of a PSD matrix must be non-negative, we arrive at the following useful

bound for the variance of the estimated phases:

var(θi) ≥
1

N f rames

[
∂gθ(zcv,d)

∂zcv,d
I−1

zcv,d

∂gθ(zcv,d)
T

∂zcv,d

]
ii

(4.75)

4.6.2 Simulation

In this section, we provide the results of a simulation in which Algorithm 3 was applied

to both interferometric architectures. For these simulations we used an RSC pattern of the

Y-pattern type as shown in Figure 4.4. The corresponding UV-sampling for this pattern

is displayed in Figure 4.5. To prevent aliasing on the simulated focal plane, this aperture
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pattern was mapped onto the Golay non-redundant pattern (Golay, 1970) shown in Figure

4.6 for fringe generation; the model emulates the redundant-to-non-redundant pupil re-

mapping technique developed by Perrin et al. (2006) and described in the Introduction.

Our simulation assumed Poisson-distributed shot-noise and idealized detectors with zero

read noise, and so is representative of a shot-noise-dominated scenario. For bispectrum

observables, we used the unbiased estimator reported by Gordon, J. A. and Buscher, D. F.

(2012):

gub = zazbzc − |za|2 − |zb|2 − |zc|2 + 2Napñ (4.76)

where za, zb, and zc are the fringe phasors associated with the three sides of a bispectrum

triangle, and ñ is an estimate of the total number of photons per aperture incident upon the

focal plane. 3

The target selected was NASA’s Cloud-Aerosol Lidar and Infrared Pathfinder Satellite

Observations (CALIPSO) satellite for which the truth image (Hill, 2008) is shown in Figure

4.7. Figure 4.8 shows the image at the resolution attainable by the pattern. Two flux

levels (2000 photoelectrons/aperture/frame, and 500 photoelectrons/aperture/frame) were

considered for these simulations. Comparative error analysis using Equation (4.60) showed

a lower predicted Root-mean-squared (RMS) phase error for the decoupling approximation

in Proposition 4.4.10 than that in Proposition 4.4.9, and hence the former was chosen in

Algorithm 3. Bispectra and n-spectra were integrated for 5e4 frames, which corresponds

approximately to an 8-minute observation time if we assume a typical frame duration of 10

msec. An implementation of the Bellman-Ford-Moore shortest-path algorithm (O’Connor,

2012) was used to generate a minimum cycle basis as per Algorithm 3.

To show the potential impact of generalizing the closure phase notion, Algorithm 3 was

compared with an analogous algorithm which instead used the minimum-variance set of

(Nap−1
2 ) independent traditional (i.e. three-baseline) closure phases. This minimum set was

3We did not derive the more complicated bias corrections for higher-order nspectra as empirical results
indicated that at the flux levels considered, the importance of these bias corrections declined with the order of
the nspectra.
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Figure 4.4: RSC aperture pattern used in simulation

Figure 4.5: UV-sampling for RSC pattern
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Figure 4.6: Golay non-redundant beam-combiner pattern

Figure 4.7: Truth image for simulation: the CALIPSO satellite
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Figure 4.8: Truth image at the resolution of the interferometric pattern

generated via application of the greedy algorithm described above to the set of all (Nap−1
2 ).

Numerical results for the pairwise and Fizeau architectures in the higher flux scenario

are shown in Figures 4.9 and 4.10, respectively. In these plots, the RMS Fourier-phase

errors for 10 independent simulation trials are plotted as a function of their corresponding

visibilities for the basic solution. Median-filtered versions of the predicted standard errors

based on Equations (4.60) and (4.64) are also shown for both basic and pseudo-inverse

solutions, respectively. 4

As expected, the Fizeau architecture proves to be more sensitive than the Pairwise

architecture, which corroborates analysis by Zmuidzinas (2003). Figures 4.11 and 4.12

respectively show Fizeau performance for the higher flux scenario at a shorter integration

time (1e3 frames), and for the lower flux scenario at the long integration time (5e4 frames).

Note that in the use of independent generalized closure phases according to Algorithm

3 outperforms the analogous scheme in which only traditional closures are used; the

4The actual predictions exhibit oscillations, which reflect the particular structure of our mapping between
Fourier phases and GC’s. For clarity we have created smoothed versions of the predicted curves by creating
bins with edges at visibilities {5, 10, 20, 40, 80, 160, 320} ∗ 10−3, and displaying the median values in each bin.

103



root-mean-squared (RMS) errors are noticeably lower for the former.

It is interesting to examine performance relative to the CRLB described in Section

1.4. Recall that our CRLB is an atmosphere-oracle bound and hence it should bound phase

estimation accuracy for the case of a stationary fringe averaged over many frames. The

variance of such an estimator can be easily calculated by leveraging the analysis in Section

4.3. Namely the pseudovariance of the phasor is given by applying Equation (4.40) after

averaging, so that SNR of the averaged fringe phasor z̄ is given by:

σ2
z̄ =

1
SNRz̄

=
σ2

z̄

‖E[z̄]‖2 =
Nap

2N f ramesnγ2 (4.77)

We compute the predicted phase RMS for the atmosphere-oracle by taking the square-

root of this expression, and add it to the plots. From the plots, we see that CRLB is virtually

identical to this expression, except for isolated dips in the CRLB. These dips correspond to

the redundant baselines, which as expected, admit increased phase sensitivity due to their

multiplicity.

In the higher-flux scenario (n = 2e3), our algorithm’s phase-estimation performance is

within a factor of 2 from the CRLB for the vast majority of sampled visibilities. As the flux

drops to n = 5e2, the performance begins to diverge from the CRLB as the closure phase

variance leaves the regime described by Equation (4.25) and enters the regime described by

Equation (4.24). That is, the variance is no longer accurately modeled simply by a linear

combination of the individual phase variances of the form in Equation (4.77); rather it

becomes inversely-proportional to the product of the squared-visibilities. The rapid decrease

in fidelity of the closure phase at low-SNR is well-known in interferometry (Kulkarni et al.,

1991).

Sample image reconstructions are shown in Figure 4.13. The reconstructions derived

from generalized closures show greater fidelity to the true image than those derived from

traditional closures, and thereby corroborate the numerical analysis presented in the plots.

It is noteworthy that while our algorithm attempts to find a minimum-variance set of

n-spectra, this set is not necessarily the optimum set for phase estimation; our algorithm
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Figure 4.9: Pairwise Phase Recovery Results for Flux n = 2e3 pe/ap/frame, 5e4 frames
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Figure 4.10: Fizeau Phase Recovery Results for Flux n = 2e3 pe/ap/frame, 5e4 frames
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Figure 4.11: Fizeau Phase Recovery Results for Flux n = 2e3 pe/ap/frame, 1e3 frames
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Figure 4.12: Fizeau Phase Recovery Results for Flux n = 5e2 pe/ap/frame, 5e4 frames
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Figure 4.13: Fizeau Image Reconstruction Results. The reconstructions in the left column used traditional,
three-baseline observables, whereas those in the right column used generalized closures selected according
to Algorithm 3. (top row) n = 2e3 photoelectrons/aperture/frame (pe/ap/frame), 5e4 frames, (middle row)
n = 2e3 pe/ap/frame, 2e3 frames, (bottom row) n = 5e2 pe/ap/frame, 5e4 frames.
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does not account for the conditioning of the matrix Coc resulting from a particular choice of

nspectra. In fact there may be some cases in which the use of traditional closures results

in lower phase-estimation error due to better conditioning in the corresponding Coc. In

practice the decision to use traditional or generalized closures can be resolved by examining

the phase errors predicted by Equation (4.60), for basic solutions, or Equation (4.64) for

pseudo-inverse solutions.

4.6.3 Generalized Closures in Non-Linear Least Squares Approaches

This paper has proposed both novel reconstruction methodology as well as new interfero-

metric observables. A natural question arises as to whether the advantages of the latter are

retained with other, existing methodology. In particular, we consider the class of techniques

which solve the non-linear least squares inference problem involving bispectrum phasors

(Gorham et al., 1989), (Negrete-Regagnon, 1996) (see Section 4.2).

While these algorithms bring the complexities involved in non-linear optimization (e.g.

possible stagnation in local minima and/or slow convergence), they also feature the ability

to utilize any number of closure relations. Algorithm 3 restricts attention to closure relations

which form cycle bases, thereby guaranteeing well-posed Fourier phase recovery while

keeping the size of the associated CVP-unwrapping problem tractable. However, as noted

by Kulkarni et al. (1991), fitting to all (Nap
3 ) closures will in principle improve estimation

performance when the per-frame flux is low, due to the fact that closure phases de-correlate

as the flux decreases 5. Specifically, as computed by Kulkarni et al. (1991) for traditional

closures in the pairwise case, the correlation coefficient µ of two closures sharing a common

baseline approaches 1
3 in the high-SNR regime (i.e. for n̂γ2 � 1) as one would expect 6. On

the other hand, the correlation coefficient in the low-SNR regime can be accurately modeled

as µ ≈ 1
4 γ4n̂2.

To assess the phase-estimation performance provided by generalized closures relative

5The interested reader is directed to Buscher (2015) for a dedicated discussion of this issue

6Here Kulkarni et al. (1991) assumes a common visibility γ among all baselines in the closure
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to that using the complete set of traditional closures, we consider the algorithm developed

first by Gorham et al. (1989) which works the normalized bispectrum instead of the closure

phase. We used the MATLAB® non-linear least-squares solver (NLS) known as lsqnonlin

(MATLAB, 2014) to minimize the objective Ψ2 in Equation (4.3). This solver obtains a

quadratic approximation of the objective at each step and moves towards the minimum of

this approximation, at which point another approximation is computed and the process

repeats. The weights in Ψ2 were set as in Gorham et al. (1989):

wi =
σ̂gi

‖ḡi‖
(4.78)

where ‖ḡi‖ is the magnitude of the averaged unbiased nspectrum, and σ̂gi is the empirical

standard deviation of its quadrature components.

Results of applying this solver to the lower-SNR scenario of the previous section are

given in Figure 4.14. A single randomly-chosen initialization point was used in all cases.

The top row shows reconstructions and associated convergence times for the NLS algorithm

using traditional closures (left) and generalized closures selected from a minimum cycle

basis (middle), respectively. The bottom row gives analogous results for the case in which

all (Nap
3 ) traditional closures are used. Three snapshots at iteration counts 20, 40, and 80 are

shown. Iterations after 80 resulted in negligible change to the image quality. These results

suggest that generalized closures can provide at least the sensitivity of traditional closures.

At the same time, they benefit from the increased convergence speed afforded by a problem

size proportional to the size of cycle basis (i.e. ∝ N2
ap) as opposed to the size of the set of all

closures (i.e. ∝ N3
ap). These results hence show that generalized closures can serve as more

efficient sources of phase information than traditional closures.
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Figure 4.15: Raw (left) and median-filtered (right) Fourier phase error using the NLS approach.
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In Figure 4.15, we plot phase error as a function of visibility for the NLS approach using

a cycle basis of traditional closures (blue), a cycle basis of generalized closures (green), and

using all (Nap
3 ) traditional closures (red). The median absolute error for 20 trials is shown in

the scatter plot in the left panel. The same median-filter that was applied to the predictions

in Figures 4.9-4.12 was then applied to this raw data to produce the results in the right panel

of the Figure. It is clear that the sensitivity advantage of generalizing the closure relations is

retained in the NLS approach for this example.

It is noteworthy that the selection of a minimum-variance set of generalized closures

involves computational overhead in the execution of the greedy algorithm. However, it is

anticipated that in many cases we may be able to obtain a reliable surrogate for this set

by instead by forming a fundamental cycle basis (Liebchen and Rizzi, 2005) associated with

minimum-variance spanning tree of the interferometric graph. Constructing this alternate

basis, which was introduced in Section 3.5.3, obviates the need for execution of the greedy

algorithm; it merely requires the execution of a Minimum-weight Spanning-tree algorithm

(e.g. Prim-Jarnik Algorithm (Prim, 1957)) with each edge weight set to the reciprocal of the

squared visibility associated with baseline, which is again used a proxy for the baseline’s

phase variance 7. The elements of the corresponding minimum-variance spanning tree

7We used a MATLAB® implementation of Prim’s algorithm which is available online (Greenbaum, 2007)

111



-10 -5 0 5 10 15 20
-15

-10

-5

0

5

10

15

Figure 4.16: The minimum-variance spanning tree

(MVST) cycle basis are then found by closing the edges of this spanning tree, which is shown

in Figure 4.16. Indeed, many of the Horton cycles comprising the minimum cycle basis

computed for this example pattern and scenario are also members of the MVST basis. Not

surprisingly, the reconstruction with this basis shown in the upper right corner of Figure

4.14 approaches of the quality that for the minimum-cycle-basis set (compare with image in

the middle of the top row in Figure 4.14). Moreover the median absolute phase error for

this approach, which is shown in cyan in the right panel of Figure 4.15, is very similar to

that observed with the Minimum Cycle Basis.

While the analysis of Kulkarni et al. (1991) revealed the advantage of supplementing a

cycle basis with additional traditional closures in the pairwise case, this advantage should

in principle extend to the case of generalized closure phases in the Fizeau architecture. Our

CRLB comparison above (i.e. Figures 4.10 and 4.11) confirms that there is limited scope for

improvement in the regime n
Nap
≈ 60. In the regime explored in the lower-SNR scenario (see

Figure 4.12), however, there is certainly a CRLB-gap which may be closed with appropriate

selection of supplementary generalized closures. We leave the development of algorithms to

perform such a selection efficiently for future work.
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4.7 Conclusion

In this chapter, we have developed a novel method for interferometric imaging which

employs RSC techniques and a generalized notion of bispectrum observable (the n-spectrum).

We have established that phase estimation from these observables can be well-posed for valid

RSC arrays. We have also provided a fast algorithm for selection of a minimum-variance

set of these observables, which is based on the concept of minimum cycle basis in graph

theory. Then, leveraging the lattice-theory problem formulation first proposed by Lannes

and Anterrieu (1999) for unwrapping of the closure phases, as well as techniques from

sparse recovery for image reconstruction in the presence of Fourier undersampling, we

have proposed a new algorithm for image reconstruction in optical interferometry. We

have shown that the performance of the phase-estimation part of our algorithm can be

quantified from first principles using standard linear estimation theory. We have used

simulation at different photon-flux levels to corroborate this analysis, and to show the

potential advantage of performing inference using the n-spectrum observable as opposed to

its classical counterpart - the bi-spectrum. It is our hope that both the theoretical framework

employed in this chapter, as well as the practical algorithm itself, will prove useful to future

users in designing RSC-based interferometric systems and processing their data.
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Chapter 5

Conclusions

This thesis has presented both theoretical and practical contributions to the study of robust

imaging in optical interferometry. Our principal theoretical contribution is that we have

developed the notion of the wrap-invariant RSC pattern. We have shown that these patterns

enable unique recovery of the Fourier phase of the object under observation. These results

are fundamental in the sense that they apply to the entire family of RSC techniques which fit

the Fourier phase either directly to the complex visibilities measured by the interferometer,

or atmosphere-invariant combinations of these such as the bispectrum. We summarize our

uniqueness results in Table 5.1, classifying them according to the Approach type (i.e. Phase

vs. Phasor), and the observable used in the phase recovery (i.e. direct measurements of the

fringe phase or phasor vs. an atmosphere-invariant combination thereof). References to

other work in the literature employing each observable-approach pair are also provided for

context.

We have leveraged these theoretical results to construct a novel algorithmic framework for

image reconstruction. In our framework, we have generalized classical atmosphere-invariant

observables to improve estimation of the Fourier phase of complex objects. The ultimate

goal of this effort was to achieve near-immunity to the effect of atmospheric turbulence

in terms of Fourier-phase estimation accuracy, or more concretely, to show performance

approaching the atmosphere-oracle Cramer Rao Lower Bound. Using our algorithm, we
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provide strong theoretical and empirical evidence that we can achieve this goal in the regime

in which the per-frame photon flux is on the order of 10 photons per interferometric fringe

(i.e. n
Nap

is on the order of 10). We have seen that the increased sensitivity of our generalized

observables extends to other existing phase-recovery algorithms used in the field. Lastly, we

demonstrate that the accurate phase estimation provided by our framework allows powerful

techniques from Compressed Sensing to generate high-quality interferometric imagery.
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Appendix A

Appendix to Chapter 1

A.1 Sinusoidal Dependence of Field on Interferometer Focal Plane

As an aid for the following derivation, Figure A.1 shows the geometry involved in beam

combination at the focal plane.

Note that we can express the vector position of pixel at coordinate ρ relative to the

position of aperture j as:

xj = d + ρ− rj (A.1)

Moreover the magnitude of the wavevector kj is 2π
λ , while the unit vector in the direction

of kj is given by:

k̂j =
1√

‖d‖2 +
∥∥rj
∥∥2

[
rj + d

]
(A.2)

Hence the phase added to the field due to the path between the beam combiner and

focal plane (at pixel ρ) is given by:

kj · xj =
2π

λ
√
‖d‖2 +

∥∥rj
∥∥2

[
rj + d

]
·
[
d + ρ− rj

]
(A.3)

Expanding the dot-product and noting that d · ρ = 0, d · rj = 0, and d · d is constant
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Figure A.1: Beam-Combination Geometry

independent of apertures, we obtain (up to a constant offset independent of aperture):

kj · xj =
2π

λ
√
‖d‖2 +

∥∥rj
∥∥2

(
rj · ρ

)
+ φj (A.4)

where φj :=
2π‖rj‖2

λ

√
‖d‖2+‖rj‖2 .
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Appendix B

Appendix to Chapter 3

B.1 Proof of Proposition 3.5.7

In this Proposition, we propose that we can solve for the Fourier phase vector from the

closure relations in two separate integer-preserving steps: the first (Step A) involving the

SNF decomposition of Cm→c, and the second (Step B) involving that of M. To show the

validity of this two-stage decomposition, we require the following Lemma.

Lemma B.1.1. ker(Cm→c) = L

Proof : Clearly every vector in L must be in ker(Cm→c), since otherwise there would exist

a combination of {φ} which would produce a non-zero closure phase. This is impossible

due to the atmosphere-annihilating property of the closure phase. We must also show

that L spans the kernel. Note that dim(im(Cm→c)) = r = (N−1
2 ), where we use im(.) to

denote the range of a matrix. Noting that Cm→c has (N
2 ) columns, we have dim(ker(Cm→c)) =

(N
2 )− (N−1

2 ) = N− 1 by the Rank-nullity Theorem from linear algebra. Since dim(L) = N− 1,

the columnspace L indeed spans the kernel. �

Suppose we have the SNF decomposition of Cm→c = UCDCVC. The result of Step A is

then:

βp = V−1
C D+

C U−1
C (y∗cl + 2πe∗h,cl) (B.1)
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Given Lemma B.1.1, Equation (B.1) can be re-written as:

βp = β∗0 + vL + 2πV−1
C D+

C U−1
C e∗h,cl (B.2)

where β∗0 is the phase measurement corresponding to the optimum least-squares solution

for Equation (3.23), and vL is a vector in L. Since the elementary divisors of Cm→c are all

1 by construction (by Lemma 2.6), the rightmost term in Equation (B.2) will be 0 mod 2π

and hence the first step is thus integer-preserving. Moreover, since vL is restricted to L, the

Fourier-phase error resulting from application of the SNF-based inverse V−1
M D+

MU−1
M in Step

B will be 0 mod 2π if all elementary divisors of M are 1. Hence the Proposition holds. �

B.2 Proof of Lemma 3.7.2

In this section, we prove Lemma 3.7.2, which states the following:

Given wrap-invariance, the (column) vector UXM+
K e∗h has integer entries below row 2.

Given that we have a wrap-invariant pattern, we know that the elementary divisors of

M are all 1. Hence there exists an integer vector k0 such that:

e∗h = Mk0 (B.3)

Substituting Equations (C.45) and (3.26) into Equation (C.38), we obtain:

eσ = VσΣ+
σ UT

σ UσΣσVT
σ k0 (B.4)

Noting that Uσ is orthogonal, this equation can be simplified to

eσ = (Vσ −N)VT
σ k0 (B.5)

where N is a matrix of the same size as Vσ, which is zero except for the last three

columns. These last three columns are identical to those of Vσ, and hence by Lemma 4.1

comprise an orthogonal basis for the nullspace of M. Noting the orthogonality of Vσ, this
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can be further simplified to:

eσ = k0 −NVT
σ k0 (B.6)

To proceed, the following Definition will be useful:

Definition A.1 (The canonical basis for the nullspace of M): The canonical basis

{wi}, i ∈ 1, 2, 3 for the three-dimensional nullspace of M can be derived trivially from the

well-known tilt-position degeneracy in interferometry described in Section 3.5.1 (Wieringa,

1992). Namely, we can define the basis as the columns of a (N + d)× 3 matrix Wker(M) as

follows:

Wker(M) = {w1|w2|w3} =

 0 ∆rx ∆ry

1N×1 rx ry

 (B.7)

where rx and ry are the x− and y−positional coordinates of the apertures associated

with each row, respectively, and ∆rx and ∆ry their respective pairwise differences. �

Note that each of the three non-zero column vectors {vk}, k ∈ 1, 2, 3 in N can be expressed

as a linear combinations of the elements of the canonical basis {wi}, i ∈ 1, 2, 3 defined above,

i.e.

vk = a1w1 + a2w2 + a3w3 (B.8)

As in Section 3.5.1, let us again use K to denote the set of indices in eσ associated with

the Fourier phases (as opposed to the piston phases), and their corresponding rows in N.

Hence we have:

UXeσ,K = UXk0,K −UXNKVT
σ k0 (B.9)

Since UX is an integer matrix, the first term is clearly integral. Let us then examine the

second term, and in particular, the product UXNK. By substitution from Equation (C.49), we

see that for any of the three non-zero columns vk,K of NK, we have (by simply changing the

basis for the nullspace):
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UXvk,K = a1UXw1,K + a2UXw2,K + a3UXw3,K (B.10)

where {wj,K} are the vectors comprising the upper partition of Equation (B.7). The first

term in Equation (C.51) is trivially 0 since w1,K is the zero-vector. Now note from Theorem

3.5.2 that UX is a matrix which annihilates all the spatial frequencies in the matrix X below

row 2. But from Definition A.1, these spatial frequencies are identically the contents of the

two columns w2,K and w3,K (up to a uniform scaling factor). Therefore the column vector in

Equation (C.51) is zero below row 2. This means in turn that the second term in Equation

(C.50) is zero below row 2, and hence that UXeσ,K is integral below row 2 (since the first

term is integral). �
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Appendix C

Appendix to Chapter 4

C.1 Fizeau Variance Approximations

C.1.1 Variance Decomposition

In this section we justify our approximation for the variance of the n-spectrum for the Fizeau

architecture. Our goal here is not to compute all of the numerous terms in the variance, but

rather to present the mathematical intuition behind the approximation we have used. The

general formula for the variance of an n-spectra G is:

Var[G] =

〈
o

∏
i=1

ziz∗i

〉
−
〈

o

∏
i=1

zi

〉〈
o

∏
i=1

z∗i

〉
(C.1)

For simplicity, we analyze the standard bispectrum case (o = 3). The analysis extends

naturally to the n-spectrum. Note that by extension of Equation (4.8) the first term can be

written as:

〈
o

∏
i=1

ziz∗i

〉
= ∑

pa,pb,pc,pd,pe,p f

〈q(pa)q(pb)q(pc)q(pd)q(pe)q(p f )〉

× eiω1(pd−pa)eiω2(pe−pb)eiω3(p f−pc) (C.2)
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Similarly, the second term in Equation (C.1) can be written as:〈
o

∏
i=1

zi

〉〈
o

∏
i=1

z∗i

〉
=

∑
pa,pb,pc,pd,pe,p f

〈q(pa)q(pb)q(pc)〉〈q(pd)q(pe)q(p f )〉

× eiω1(pd−pa)eiω2(pe−pb)eiω3(p f−pc) (C.3)

Proceeding analogously to Equation (4.10), we utilize the general formula for the

moments of a Poisson distribution to perform the following decomposition of the first

factor in the summand in Equation (C.2) (Kulkarni et al., 1991):
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〈q(pa)q(pb)q(pc)q(pd)q(pe)q(p f )〉 = (C.4)

+〈q(pa)〉〈q(pb)〉〈q(pc)〉〈q(pd)〉〈q(pe)〉〈q(p f )〉 (C.5)

+δp=pa=pd〈q(p)〉〈q(pb)〉〈q(pc)〉〈q(pe)〉〈q(p f )〉 (C.6)

+δp=pb=pe〈q(p)〉〈q(pa)〉〈q(pc)〉〈q(pd)〉〈q(p f )〉 (C.7)

+δp=pc=p f 〈q(p)〉〈q(pa)〉〈q(pb)〉〈q(pd)〉〈q(pe)〉 (C.8)

+δp=pa=pd〈q(p)〉δp′=pb=pe〈q(p′)〉〈q(pc)〉〈q(p f )〉 (C.9)

+δp=pa=pd〈q(p)〉δp′=pc=p f 〈q(p′)〉〈q(pb)〉〈q(pe)〉 (C.10)

+δp=pb=pe〈q(p)〉δp′=pc=p f 〈q(p′)〉〈q(pa)〉〈q(pc)〉 (C.11)

+δp=pa=pd〈q(p)〉δp′=pb=pe〈q(p′)〉δp′′=pc=p f 〈q(p′′)〉 (C.12)

+δp=pa=pe〈q(p)〉〈q(pb)〉〈q(pc)〉〈q(pd)〉〈q(p f )〉 (C.13)

+δp=pa=p f 〈q(p)〉〈q(pb)〉〈q(pc)〉〈q(pd)〉〈q(pe)〉 (C.14)

+δp=pb=pd〈q(p)〉〈q(pa)〉〈q(pc)〉〈q(pe)〉〈q(p f )〉 (C.15)

+δp=pb=p f 〈q(p)〉〈q(pa)〉〈q(pc)〉〈q(pd)〉〈q(pe)〉 (C.16)

+δp=pc=pd〈q(p)〉〈q(pa)〉〈q(pb)〉〈q(pe)〉〈q(p f )〉 (C.17)

+δp=pc=pe〈q(p)〉〈q(pa)〉〈q(pb)〉〈q(pd)〉〈q(p f )〉 (C.18)

+δp=pa=pb〈q(p)〉〈q(pc)〉〈q(pd)〉〈q(pe)〉〈q(p f )〉 (C.19)

+δp=pa=pc〈q(p)〉〈q(pb)〉〈q(pd)〉〈q(pe)〉〈q(p f )〉 (C.20)

+δp=pb=pc〈q(p)〉〈q(pa)〉〈q(pd)〉〈q(pe)〉〈q(p f )〉 (C.21)

+δp=pd=pe〈q(p)〉〈q(pa)〉〈q(pb)〉〈q(pc)〉〈q(p f )〉 (C.22)

+δp=pd=p f 〈q(p)〉〈q(pa)〉〈q(pb)〉〈q(pc)〉〈q(pe)〉 (C.23)

+δp=pe=p f 〈q(p)〉〈q(pa)〉〈q(pb)〉〈q(pc)〉〈q(pd)〉 (C.24)

+δp=pa=pb=pc〈q(p)〉〈q(pd)〉〈q(pe)〉〈q(p f )〉 (C.25)

... + other order-3 terms (C.26)

+δp=pa=pb=pc=pd〈q(p)〉〈q(pe)〉〈q(p f )〉 (C.27)

... + other order-4 terms (C.28)

... + order-6 terms (C.29)
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The total number of partitions (203) in the summation above is given by the 6th Bell

number. Below we categorize the terms by their order, which in this case we define as the

largest number of common pixels in each partition. We will see that we can approximate

the pseudo-variance to reasonable accuracy by including a particular subset of the Order-2

terms. Note that all terms in the analogous decomposition of Equation (C.3) are also in

Equation (C.2) and hence cancel them in Equation (C.1).

C.1.2 Order-2 Terms

These terms have a pair of common pixels. We distinguish between the following two cases:

Case 1: conjugate pairs These terms are given in (C6)-(C12). The common pixels belong to

the conjugate pairs, i.e. p := pa = pd, p := pb = pe, and p := pc = p f , respectively, which

also appear in the pairwise case. Let us assume that the visibilities associated with ω1, ω2,

and ω3 are all roughly equal, i.e. γ̄ = γ1 = γ2 = γ3. Consider the sum of the first of these

terms (C6) over the focal plane, i.e.:

∑
p=pa=pd,pb,pc,pe,p f

〈q(p)〉〈q(pb)〉eiω2 pb〈q(pc)〉ei(ω1+ω2)pc

× 〈q(pe)〉e−iω2 pe〈q(p f )〉e−i(ω1+ω2)p f

= ∑
p:=pa=pd

Λp ∑
pb

Λpb eiω2 pb ∑
pc

Λpc e
i(ω1+ω2)pc

∑
pe

Λpe e
iω2 pe ∑

p f

Λp f e
−i(ω1+ω2)p f

(C.30)

The magnitude of this expression is (Napn5γ2
2γ3

3). In the case where all visibilities are

equal to γ̄, this expression becomes Napn5γ̄4. Terms (C7)-(C8) follow this same form.

Now consider term (C9):

131



∑
p=pa=pd,p′=pb=pe,pe,p f

〈q(p)〉〈q(p′)〉〈q(pe)〉e−iω2 pe

× 〈q(p f )〉e−i(ω1+ω2)p f

= ∑
p:=pa=pd

Λp ∑
p′ :=pb=pe

Λ′p ∑
pc

Λpc e
i(ω1+ω2)p f

×∑
p f

Λp f e
−i(ω1+ω2)p f

(C.31)

The magnitude of this expression is N2
apn4γ2

3, which, under the assumption of equal

visibilities, becomes N2
apn4γ̄2. Terms (C10)-(C11) follow this same form.

Case 2: mixed non-conjugate pairs

We now consider the terms in which a pair includes two distinct baselines (e.g. (C13)-

(C18)). The common pixels in this case are such that one of the corresponding baselines is

conjugated and the other is not. Taking, for example, the case (C13) in which p := pa = pe,

we have:

∑
p=pa=pe,pb,pc,pd,p f

〈q(p)〉ei(ω1−ω2)p〈q(pb)〉eiω2 pb

× 〈q(pc)〉ei(ω1+ω2)pc〈q(pd)〉e−iω2 pd〈q(p f )〉e−i(ω1+ω2)p f

= ∑
p:=pa=pe

Λpei(ω1−ω2)p ∑
pb

Λpb eiω2 pb ∑
pc

Λpc e
i(ω1+ω2)pc

×∑
pd

Λpd e−iω2 pd ∑
p f

Λp f e
−i(ω1+ω2)p f (C.32)

where γω1−ω2 is the visibility of the fringe of spatial frequency ω1 −ω2. Note that the first

factor in the Equation above clearly vanishes if such a fringe is not created by the beam

combiner. Otherwise, assuming equal strength of the visibilities, the magnitude of this

expression is given by (n5γω1−ω2 γ1γ2γ2
3), or n5γ̄5 in the case of equal visibilities. Comparing

with any of the Case 1 terms and recalling that γ̄ < 1, we see that the latter will dominate
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the former in the regime considered in this paper (n ≈ 1e3, γ̄� 1, Nap = 31).

Case 3: terms in decomposition Equation (C.3)

This Case includes terms (C5), as well as (C19)-(C24). The common pixels are such

that both or neither of the corresponding baselines are conjugated, i.e.: the cases pa = pb,

pa = pc, pb = pc, pd = pe, pd = p f , pe = p f . These terms are canceled by their counterparts

in Equation (C.2). �

C.1.3 Higher Order Terms

An example of a third-order term would be the case of p := pa = pb = pd, whose sum is

given by:

∑
p:=pa=pb=pd,pc,pe,p f

〈q(p)〉eiω2 p〈q(pc)〉e−i(ω1+ω2)pc〈q(pe)〉e−iω2 pe〈q(p f )〉e−i(ω1+ω2)p f (C.33)

= ∑
p:=pa=pb=pd

Λpeiω2 p ∑
pc

Λpc e
i(ω1+ω2)pc ∑

pe

Λpe e
−iω2 pe ∑

p f

Λp f e
−i(ω1+ω2)p f (C.34)

The magnitude of this expression is given by n4γ2
2γ2

3. For equal visibilities, we have n4γ̄4.

Clearly this term will be dominated by the Case 1 terms. Other high-order terms exhibit a

similar sharp attenuation which allows them to be neglected for practical purposes. �

Given the relative strengths of the terms shown above, we will retain Case 1 terms

(C6)-(C12), which after summation and factoring, yield Equation (4.41). Note that this

amounts to the following approximation:

Vf izeau(G) ≈
[

o

∏
i=1
〈ziz∗i 〉

]
−

o

∏
i=1
〈zi〉〈z∗i 〉 (C.35)

Applying analogous analysis to the Fizeau covariance yields the following approxima-

tion:

σ(G1, G∗2 ) f izeau ≈
[

∏
k∈I∩J

〈zkz∗k 〉 − ∏
k∈I∩J

〈zk〉〈z∗k 〉
]

∏
l∈I\J
〈zl〉 ∏

m∈J\I
〈z∗m〉 (C.36)

Note that this matches the corresponding pairwise expression in Equation (4.28). Substi-
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tution then yields the final Fizeau covariance expressions in Equations (4.43)-(4.44).

C.2 Proofs of Proposition 4.4.2 and Corollary 4.4.3

C.2.1 Proof of Proposition 4.4.2

Proposition 4.4.2: For a valid RSC array, the columns ∆rx and ∆ry form a basis for the

two-dimensional nullspace of Coc.

Proof: To see that the two columns mentioned belong to the nullspace of Coc, note that each

solution set to the noiseless version of Equation (4.49) above remains valid after replacing

each θij with θ
p
ij = θij − z · (ri − rj).

We then need to establish that these two vectors span the entire nullspace of Coc by

showing that this nullspace is two-dimensional. Suppose we have a vector w which is in

the nullspace Coc. This is equivalent to the either of the following conditions: Mθw = 0,

or Mθw ∈ ker(Cmc). The former condition is not possible since the columns spanning the

subspace K are linearly-independent. The latter condition is equivalent to the condition that

Mθw ∈ K ∩ L. It is well-known fact that for any two subspaces K and L, we have:

dim(K ∩ L) = dim(K) + dim(L)− dim(K + L) (C.37)

We established in Section 3.5.1 that dim(K + L) = rank(M) = d + N − 3 for a valid RSC

system. Also dim(K) = d, since the K is spanned by d linearly-independent columns. Finally

dim(L) = N − 1. Substituting into Equation (C.37), we see that dim(K ∩ L) = 2. �

C.2.2 Proof of Corollary 4.4.3

Corollary 4.4.3: For a valid RSC array, the mapping Coc is injective up to an image shift.

Proof: Proposition 4.4.2 showed that the nullspace is comprised of linear combinations of

vectors ∆rx and ∆ry. Note that ∆rx and ∆ry are simply scaled versions of the x- and y-spatial

frequency vectors in the array, respectively. Hence adding linear combinations of these

vectors to a particular RSC phase solution merely produces phase ramps in the Fourier

134



domain, which are equivalent to translations (or shifts) in the image domain. In other words,

the mapping Coc is invertible up to an unknown image shift. �

C.3 Proof of Proposition 4.4.5

We begin the Proof with the following Lemma:

Lemma C.1: The final 2 columns of Vσ form a basis for the nullspace of Coc.

Proof: This follows from the fact Coc is rank-deficient by 2, and standard properties of the

right singular vectors comprising Vσ in the SVD. (Bretscher, 2001) �

Note that the error resulting from application of the pseudo-inverse C+
oc to the unwrapped

vector of closures will be given by:

2πeσ = C+
oc(2πe∗h) (C.38)

Let us express the spatial frequencies measured by an array as two-element vectors of

the form (ωx, ωy). Let X be the d× 2 matrix containing these spatial frequencies. Note then

that the phase-wrap error will manifest itself merely as an image shift if and only if this

error is a (modulo-2π) phase ramp, i.e. there exists a 2-element shift vector z and an integer

vector k which together satisfy:

2πeσ − 2πXz = 2πk (C.39)

Substituting from Equation (C.38) we obtain:

C+
oc(2πe)− 2πXz = 2πk (C.40)

Dividing through by 2π we obtain the equation: C+
oce∗h −Xz = k. Note that each element

of C+
oc can be expressed as some rational number pi

qi
. Similarly we first assume X contains

rational spatial frequencies with greatest common denominator qx. Then we can multiply

through by the least-common-multiple (LCM) of the {qi} and qx to obtain a system of

equations whose coefficients are guaranteed to be integer (i.e., we have a linear Diophantine
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system). Let this LCM be denoted as l. Then we have, after rearranging terms,

lXz = l(C+
oce∗h − k) (C.41)

We now wish to determine conditions under which there exist vectors k and z satisfying

this overdetermined Diophantine system. Applying the Smith Normal Form decomposition

(c.f. Theorem 2.2) to the matrix lX this time, and noting that rank(X) = 2, we have:

DX = UX(lX)VX (C.42)

where UX and VX are unimodular matrices of size d× d and 2× 2, respectively, and DX

is a rectangular diagonal matrix whose entries are zero below row 2.

If we left-multiply Equation (C.41) by UX on both sides, we obtain:

lUXXz = lUX(C+
oce∗h − k) (C.43)

Using Equation (C.42) and the fact that VX is a unimodular (and hence invertible) matrix,

we can then write:

DXV−1
X z = l(UXC+

oce∗h −UXk) (C.44)

We are now in position to prove the main result of this section, which is preceded by the

following Lemma:

Lemma C.2: Given wrap-invariance, the (column) vector UXC+
oce∗h = UXeσ has integer

entries below row 2.

Proof :

Given that the elementary divisors of Coc are all 1, we know there exists an integer vector

k0 such that:

e∗h = Cock0 (C.45)

Substituting Equations (C.45) and the pseudo-inverse definition in (4.63) into Equation
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(C.38), we obtain:

eσ = VσΣ+
σ UT

σ UσΣσVT
σ k0 (C.46)

Noting that Uσ is orthogonal, this equation can be simplified to

eσ = (Vσ −N)VT
σ k0 (C.47)

where N is a matrix of the same size as Vσ, which is zero except for the last two columns.

These last two columns are identical to those of Vσ, and hence by Lemma 4.1 comprise an

orthogonal basis for the nullspace of Coc. Noting the orthogonality of Vσ, this can be further

simplified to:

eσ = k0 −NVT
σ k0 (C.48)

Recall from Proposition 4.4.2 that the canonical basis for the nullspace of Coc is given

by vectors ∆rx and ∆ry, which denote the vectors containing the x- and y-coordinates of

the baselines in an array, respectively. Note that each of the two non-zero column vectors

{vk}, k ∈ 1, 2 in N can be expressed (via a simple change of basis) as a linear combinations

of the elements of the canonical basis as.

vk = a1w1 + a2w2 (C.49)

Hence we have:

UXeσ = UXk0 −UXNVT
σ k0 (C.50)

Since UX is an integer matrix, the first term is clearly integral. Let us then examine the

second term, and in particular, the product UXN. By substitution from Equation (C.49), we

see that for any of the two non-zero columns vk of N, we have:

UXvk = a1UXw1 + a2UXw2 (C.51)
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Now note from Theorem 3.5.2 that UX is a matrix which annihilates all the spatial

frequencies in the matrix X below row 2. But these spatial frequencies are in fact the

contents of the two columns w1 and w2 (up to a uniform scaling factor). Therefore the

column vector in Equation (C.51) is zero below row 2. This means in turn that the second

term in Equation (C.50) is zero below row 2, and hence that UXeσ is integral below row 2

(since the first term is integral). �

To utilize Lemma C.2, we first re-arrange the Equation (C.44) above so that it reads:

1
l

DXV−1
X z−UXC+

oce∗h = −UXk (C.52)

Let v = 1
l DXV−1

X z−UXC+
oce∗h. Note that since DX is zero below row 2, the entries of v

below row 2 will be equal to those of (−UXC+
oce∗h), which are integers by Lemma C.2. Now

consider the first and second entries of v. Let f be the vector containing the fractional parts

of the first two elements of vector UXC+
oce∗h, and let A be the invertible matrix consisting

of the first two rows of 1
l DXV−1

X . Without loss of generality, choose z∗ = A−1f so that the

fractional part f is annihilated, leaving only integer elements in the first two entries of v.

Hence we now have:

v = −UXk (C.53)

with v ensured to contain only integer elements. Since UX is unimodular, the vector

k∗ = −U−1
X v will be integral. We have thus found a pair (z∗, k∗) with integer k∗ which

satisfies the Equation (C.44). Since Equation (C.44) is related to Equation (C.41) via a

unimodular (and hence invertible) mapping UX, invariance is hence proven. �

C.4 Minimum Cycle Basis Proofs

Lemma C.4.1. (Liebchen and Rizzi, 2005): Let H be the Horton family of a graph in which there is

a unique minimum path between each pair of nodes. Let C be a cycle of G which is not in H. Then

there exists a minimum path Pu,v between nodes in u and v of C which is internally disjoint from C.
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Figure C.1: Illustrating Lemma C.4.1 (a) and Lemma C.4.2 (b)

Proof: Choose an edge ab in C connecting nodes a and b (c.f. Figure C.1a), and another

node u also in C. Since C is not a member of H, either the path Pua or Pub in C must be

sub-optimal (as otherwise C \ ab would be a shortest-path tree rooted at vertex u). �

Lemma C.4.2. Liebchen and Rizzi (2005): All oriented cycles in a minimum cycle basis of a directed

graph D are in the Horton family.

Proof: Suppose we have found such a minimum cycle basis B = C1, ..., Ct, Cµ and it was

obtained by applying the greedy algorithm to the complete set of cycles of D. Furthermore

without loss of generality assume that Ct is the first cycle which is not a member of the

Horton set.

We know there exist two nodes u and v in Ct such that the shortest path Pu,v between

them is internally disjoint from Ct. Let C1 and C2 denote the two cycles in Ct ∪ Pu,v

distinct from Ct and with opposite orientations on Pu,v, as shown in Figure C.1b. Clearly

w(C1) < w(Ct) and w(C2) < w(Ct), and therefore both C1 and C2 can be expressed as linear

combinations of the cycles in {C1, ..., Ct−1}. Note that Ct = C1 + C2, which implies then

that Ct can be expressed as linear combinations of the cycles in {C1, ..., Ct−1}. But this is

impossible since the greedy algorithm chose Ct as linearly-independent of these cycles, and

hence we have the necessary contradiction. �
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